海淀区高一年级练习

化学

学校	班级	姓名
	·	

考

1. 本试卷共 8 页, 共两部分, 28 道题。满分 100 分。考试时<mark>间</mark> 90 分钟。

牛

2. 在试卷和答题纸上准确填写学校名称、班级名称、姓名。

须 知 3. 答案一律填涂或书写在答题纸上,在试卷上作答无效。

4. 在答题纸上,选择题用 2B 铅笔作答,其余题用黑色字迹签字笔作答。

5. 考试结束,请将本试卷和答题纸一并交回。

可能用到的相对原子质量: H 1 C 12 O 16 Na 23 Cl 35.5

第一部分

本部分共22题,每题2分,共44分。在每题列出的四个选项中,选出最符合题目要求的一项。

- 1. 随着神州十五号飞船的成功发射,6名中国航天员在空间站实现在轨交接。空间站中有一套完 善的再生式环境控制与生命保障系统,可实现舱内氧气和水的循环利用,保障航天员长时间 在轨驻留的需求。下列过程属于物理变化的是
 - A. 长征二号 F 遥十五火箭点火发射
 - B. 冷凝回收舱内的水蒸气
 - C. 利用循环水电解制氧气
 - D. 还原去除舱内的二氧化碳
- 2. 当光束通过下列分散系时,能观察到丁达尔效应的是

- C. 蔗糖溶液
- D. NaOH 溶液

- 3. 下列物质中,属于电解质的是
 - A. 乙醇
- B. Fe
- C. HNO₃
- D. KOH 溶液

- 4. 下列关于物质分类的叙述中, 不正确的是
 - A. H₂SO₄属于酸

B. KOH 属于碱

C. NO 属于氧化物

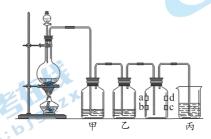
- D. 石灰水属于纯净物
- 5. 下列关于过氧化钠的说法中,不正确的是
 - A. 化学式为 Na₂O₂

B. 是白色固体

C. 能与 H₂O 反应

D. 能与 CO, 反应

高一年级(化学) 第1页(共8页)


- 6. 常温下,下列物质可用铁制容器盛装的是
 - A. FeCl₃溶液
- B. CuSO₄溶液
- C. 盐酸
- D. 浓硫酸

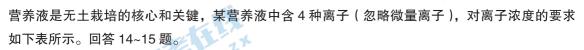
- 7. 下列转化需要通过氧化还原反应才能实现的是
 - A. $Cu \rightarrow CuSO_4$
 - C. $SO_3 \rightarrow H_2SO_4$

- $B. \ Fe_2O_3 \rightarrow FeCl_3$
- D. $NH_3 \rightarrow (NH_4)_2SO_4$
- 8. 下列行为不符合实验安全要求的是
 - A. 稀释浓硫酸时,将水注入浓硫酸中
 - B. 熄灭酒精灯时,用灯帽盖灭
 - C. 点燃氢气前,先进行验纯操作
 - D. 熄灭少量燃着的金属钠, 用干燥沙土覆盖
- 9. 下列方程式与所给事实不相符的是
 - A. 用 FeCl, 溶液刻蚀电路板上的铜箔: 2Fe³⁺ + Cu —— Cu²⁺ + 2Fe²⁺

 - C. 次氯酸见光分解: 2HClO _____ 2HCl + O₂↑
 - D. 钠放置在空气中表面会变暗: 2Na + O₂ Na₂O₂
- 10. 下列说法中,不正确的是
 - A. 1 mol Cl₂ 的质量是 71 g
 - B. 1 mol NH₃ 中含有的分子数约为 6.02 × 10²³
 - C. 常温常压下, 22.4 L CH4 的物质的量为 1 mol
 - D. 1 L 1 mol·L⁻¹ Na₂SO₄ 溶液中含有 2 mol Na⁺

实验室用下图装置制备干燥的 Clo 并研究其性质。其中, a 为湿润的淀粉 KI 试纸, b、c 分别为湿 润和干燥的红纸条, d 为湿润的蓝色石蕊试纸。回答 11~13 题。

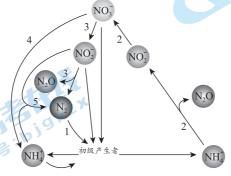
11. 用上述装置制备 Cl₂, 所选反应物和收集方法正确的是


选项	A	В	С	D
反应物	浓盐酸和 MnO ₂	浓盐酸和 MnO ₂	稀盐酸和 MnO ₂	浓盐酸和高锰酸钾
收集方法	向上排空气法	向下排空气法	向上排空气法	排水法

- 12. 为达成实验目的, 甲、乙、丙中所用试剂不正确的是
 - A. 甲中为饱和食盐水

B. 甲中为浓硫酸

C. 乙中为浓硫酸


- ALISTON TO 19 KZX D. 丙中为 NaOH 溶液
- 13. 下列关于实验现象及 Cl₂ 性质的说法中,不正确的是
 - A. 一段时间后, 观察到 a 变蓝
 - B. b 褪色, 说明 Cl。具有漂白性
 - C. b 褪色而 c 不褪色,说明 Cl₂ 能与水反应
 - D. d 先变红, 一段时间后褪色

离子种类	K ⁺	NH_4^+	NO_3^-	PO_4^{3-}
浓度 (mol・L ⁻¹)		0.03	0.03	0.01

- 14. 该营养液中 K+ 的物质的量浓度为
 - A. $0.01 \text{ mol} \cdot \text{L}^{-1}$
- B. $0.02 \text{ mol} \cdot \text{L}^{-1}$ C. $0.03 \text{ mol} \cdot \text{L}^{-1}$ D. $0.04 \text{ mol} \cdot \text{L}^{-1}$
- 15. 用下列物质配成 1 L 满足上述离子浓度要求的营养液, 其他离子对植物的影响可忽略, 符合 要求的一组是
 - A. 0.01 mol KNO₃ 和 0.01 mol Na₃PO₄
 - B. 0.03 mol KCl 和 0.01 mol (NH₄)₃PO₄
 - C. 0.01 mol KNO₃、0.03 mol NH₄Cl 和 0.01 mol Na₃PO₄
 - D. 0.03 mol KCl、0.03 mol NH₄NO₃ 和 0.01 mol Na₃PO₄

氮循环是海洋生态系统的基础和关键,其中无机氮循环过程如下图<mark>所</mark>示。回答 16~17 题。

- 16. 亚硝酸盐是氮循环中的重要物质。下列关于亚硝酸钠 (NaNO2) 性质的推测中,不合理的是 资料: HNO2 为弱酸, NO2 在碱性条件下能稳定存在。
 - A. NaNO₂ 具有氧化性

B. NaNO, 具有还原性

C. NaNO₂能与H₂SO₄反应

D. NaNO₂能与 NaOH 反应

高一年级(化学) 第3页(共8页)

- 17. 下列关于海洋无机氮循环的说法中,不正确的是
 - A. 过程 2 中,可能需要 O₂参与反应
 - B. 过程3中,发生的均为还原反应
 - C. 过程 4 中, 生成 1 mol NH₄ 至少转移 8 mol 电子
 - D. 过程 5 中, 反应后氮元素的化合价均降低

粗食盐水中常含有少量 Ca^{2+} 、 Mg^{2+} 、 SO_4^{2-} ,实验室提纯粗食盐水<mark>制</mark>取食盐的流程如下。回答 18~20 题。

- 18. 滤液 1中,不可能大量存在的离子是
 - A. Na⁺
- B. Cl
- C. Mg^{2+}
- D. SO_4^{2-}

- 19. 下列关于粗食盐水提纯的说法中,不正确的是
 - A. 过程 ii 的目的是除去 SO₄-

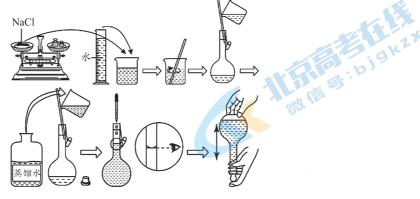
- B. 过程i和ii的顺序可互换
- C. 过程 iii 中加入的试剂 X 为 Na₂CO₃
- D. 沉淀 3 的成分是 BaCO,
- 20. 整个提纯过程中,未用到的实验仪器是
 - A. 蒸发皿
- B. 玻璃棒
- C. 漏斗

- D. 烧瓶
- 21. 用如图装置(搅拌装置略)探究溶液离子浓度变化,灯光变化呈"亮→灭→亮"的是

	A	В	С	D
试剂 a	盐酸	硫酸	CuSO ₄ 溶液	蔗糖溶液
试剂 b	NaOH 溶液	Na ₂ CO ₃ 溶液	Ba(OH) ₂ 溶液	蒸馏水

22. 下列"实验结论"与"实验操作及现象"相符的一组是

选项	实验操作及现象	实验结论	
A	将 SO ₂ 通入酸性 KMnO ₄ 溶液,溶液紫色很快褪去	SO ₂ 具有漂白性	
В	向某溶液中加入 NaOH 溶液,生成的白色沉淀迅速变为灰绿色,最终变为红褐色	原溶液一定含有 Fe ²⁺	
С	向某溶液中滴加 $BaCl_2$ 溶液,产生白色沉淀	溶液中一定含有 SO ₄ ²⁻	
D	将某气体通入澄清石灰水,澄清石灰水变浑浊	该气体一定是 CO ₂	


第二部分

本部分共6题,共56分。

23. (5分)补齐物质与其用途的连线,并回答问题。

用途	物质
A. 去除某些有机溶剂中的水分—	a. Na
B. 84 消毒液的有效成分	b. Na ₂ CO ₃
C. 厨房中的食用碱	c. Fe_3O_4
D. 打印机墨粉中的磁性成分	d. NaClO
aClO 的用途,利用了它的	(填"物理"或"化学")性质。

- (1)上述 N
- (2) Na 可以去除某些有机溶剂中的水分,用化学方程式解释其原因:。
- 24. (7分) 我国科学家用 CO, 人工合成淀粉时, 第一步需要将 CO, 转化为甲醇, 反应的化学方程 式为: CO₂ + 3H₂ - 定条件 CH₃OH + H₂O₀
 - (1)做还原剂的物质是, 碳元素的化合价 (填"升高"或"降低")。
 - (2) 反应中每生成 $1 \text{ mol } CH_3OH$,消耗 CO_2 的物质的量是 mol,转移电子的物质的量 是 _ mol。
- 25. (8分)实验小组同学需要配制 500 mL 0.4 mol·L⁻¹ NaCl 溶液。方法如下:

- (1) 需要称取 NaCl 的质量为 g。
- (2) 为完成实验,必须用到的玻璃仪器有烧杯、胶头滴管、玻璃棒、量筒和。
- (3) 在转移溶液时,玻璃棒的作用是。
- (4) 配制过程中,下列操作会导致所配溶液物质的量浓度偏小的是 (填字母)。
 - A. 配制溶液所用的容量瓶洗净后没有烘干
 - B. 转移溶液后,未洗涤烧杯和玻璃棒就直接定容
 - C. 摇匀后,发现溶液的凹液面低于刻度线,又滴加几滴蒸馏水

26. (12分)某小组用如下装置制备并探究 SO, 的性质。

- (1)制备 SO₂时发生反应的化学方程式为____。若所用硫酸的浓度较低,反应时观察不到气泡产生,可能的原因是____。
- (2)能体现 SO₂与水反应生成酸性物质的实验现象是。
- (3)②中观察到淡黄色固体生成,说明SO₂具有 (填"氧化"或"还原")性。
- (4) ③中观察到蓝色褪去, SO₂ 发生反应的离子方程式为____。
- (5)蘸有 NaOH 溶液的棉花的作用是。
- 27. (12 分) 高铁酸钾 (K_2 FeO₄, 其中 Fe 元素为 +6 价) 是新型绿色水处理剂, 其制备方法如下图所示(部分步骤已略去)。

已知:在碱性溶液中的溶解度: K₂FeO₄<Na₂FeO₄

- (1)过程 I 的目的是制备 NaClO,反应的离子方程式为_____
- (2)过程Ⅱ为碱性条件下制备高铁酸钠(Na,FeO4)。
 - ① 补全过程 Ⅱ 中发生反应的离子方程式:

$$Fe^{3+} + ClO^{-} + H_2O_{\circ}$$

- ②除 Na_2FeO_4 外,过程 II 中还可能生成一种含铁元素的难溶性杂质,该物质的化学式为
- (3)过程Ⅲ中,发生反应的化学方程式为____。
- (4) 过程 I~ II中,需要进行过滤操作的是_____(填序号)。
- (5) K_2FeO_4 可将氨氮废水中的 NH_4^+ 转化为 N_2 除去。从价态角度分析, K_2FeO_4 能处理氨氮废水的原因是。

28. (12分)某补铁剂的主要成分是硫酸亚铁 ($FeSO_4$),说明书中建议"本品与维生素 C 同服"。 小组同学为探究其原理,用放置 7 天的 $FeSO_4$ 溶液 (pH>4)进行下列实验。

资料: 维生素 $C(C_6H_8O_6)$ 又称抗坏血酸, 易溶于水, 其溶液呈酸性。

I. 检验铁元素的价态

M	实验序号	试管中的试剂	实验操作及现象
KSCN 溶液	i	2 mL 放置后的 FeSO ₄ 溶液	滴加 5 滴 KSCN 溶液后,溶液变为浅红色
	ii	2 mL放置后的 FeSO ₄ 溶液, 0.1 g 维生素 C	维生素 C 溶解,溶液 pH<3,滴加 5 滴 KSCN 溶液后,溶液仍呈无色

- (1) i 中观察到 , 说明溶液中存在 Fe³⁺。将 FeSO₄ 氧化的物质是 。
- (2) ①小组同学推测, ii 中溶液仍为无色是因为维生素 C 与 Fe³⁺ 发生了反应。补全该反应的离子方程式。

 $C_6H_8O_6 + \Box Fe^{3+} = \Box = \Box + C_6H_6O_6 + \Box H^+$

②甲同学认为,可以取 ii 中溶液加入酸性 $KMnO_4$ 溶液验证反应产物。乙同学认为该方法不可行,理由是____。

- (3) 丙同学认为 ii 中检验方案不严谨,应考虑 pH 对反应的影响,依据是
- Ⅱ. 探究 pH 对 ii 中反应的影响

小组同学补充了如下实验,继续探究 pH 对 ii 中反应的影响。

实验序号	试剂	实验操作及现象
iii	KSCN 溶液 2 mL放置后的FeSO4溶液 用几滴硫酸调pH<3	滴加5滴KSCN溶液后,溶液变为浅红色,浅红色比i中加深

- (4) 判断下列关于实验结论的说法是否正确(填"对"或"错")。
 - ① pH 对 Fe³⁺ 与 SCN⁻ 的显色反应有影响。
 - ② 加维生素 C 后 pH<3,导致 ii 中未检测出 Fe³⁺。_____

- (5) 反思实验 i~iii, 下列说法合理的是____(填序号)。
 - a. 维生素 C 具有氧化性和酸性
 - b. 同服维生素 C 可减缓补铁剂中 FeSO4 被氧化
 - c. 使用 KSCN 检验 Fe3+ 时, 宜先将溶液酸化

THE PARTY OF LAND IN COLUMN TO BE A SECOND OF THE PARTY O

北部福島·bjokzx

THE TO KEEN

THE STATE OF LEASE STATE OF LAND ASSESSMENT OF LAND

海淀区高一年级练习

化学试卷参考答案及评分参考

第一部分共22题,每小题2分,共44分。

题号	1	2	3	4	5	6	7	8
答案	В	A	С	D	В	D	A	A
题号	9	10	11	12	13	14	15	16
答案	D	С	A	В	В	С	D	D
题号	17	18	19	20	21	22		
答案	D	C	D	D	С	В		

第二部分共6题,共56分。

评阅非选择题时请注意:

- 文字表述题中加点部分为给分点,其他答案合理也给分。
- 方程式中的产物漏写"↑"或"↓"不扣分。
- 化学专用词汇若出现错别字为0分。

23. (5分)

用途	物质
A. 去除某些有机溶剂中的水分	a. Na
B. 84 消毒液的有效成分	b. Na ₂ CO ₃
C. 厨房中的食用碱	c. Fe ₃ O ₄
D. 打印机墨粉中的磁性成分 —	d. NaClO

(都对2分,部分错扣1分)

- (1) 化学(1分)
- (2) $2Na+2H_2O==2NaOH+H_2$ (2分)

24. (7分)

- (1) H₂ (2分), 降低 (1分)
- (2) 1, 6 (每空 2 分, 共 4 分)

25. (8分)

- (1) 11.7 (2分)
- (2) 500 mL 容量瓶 (2分)
- (3) 引流, 防止液体溅出 (2分)

(4) BC (2分,漏选1分)

26. (12分)

- (1) Na₂SO₃+H₂SO₄===Na₂SO₄+H₂O+SO₂↑ (2分), SO₂在水中溶解度较大 (2分)
- (2) 湿润的蓝色石蕊试纸变红(2分)
- (3) 氧化(2分)
- (4) $SO_2+I_2+2H_2O ==== 2I-+SO_4^2-+4H^+ (2 \%)$
- (5) 吸收尾气(2分)

27. (12分)

- (1) Cl_2+2OH ====Cl+ClO+ H_2O (2分)
- (2) ① $2Fe^{3+}+3ClO+10OH====2FeO_4^2+3Cl+5H_2O$ (2 分) ②Fe(OH)₃ (2分)
- (3) $Na_2FeO_4+2KOH====K_2FeO_4 \downarrow +2NaOH (2 分)$
- (4) II和III(2分,漏选1分)
 - (5) K₂FeO₄中 Fe 处于+6 价,具有强氧化性,可将 NH₄+氧化为 N₂ (2 分)

28. (12分)

- (1) 溶液变浅红色 (1 分), $O_2(1 分)$
- (2) $(1)C_6H_8O_6+2Fe^{3+}=2Fe^{2+}+C_6H_6O_6+2H^+$ (2 %)
 - ②ii 中溶液中含有未反应的维生素 C,还可能存在未被氧化的 Fe^{2+} ,都能使酸性 KMnO₄溶液褪色(2分, 合理即可, 不求全)
- (3) 维生素 C 的溶液呈酸性,或 FeSO₄溶液的 pH>4 而 ii 中溶液 pH<3 (2分)
- (4) ①对, ②错(每空1分,共2分)
- (5) bc (2分,漏选1分)

关于我们

北京高考在线创办于 2014 年,隶属于北京太星网络科技有限公司,是北京地区极具影响力的中学升学服务平台。主营业务涵盖:北京新高考、高中生涯规划、志愿填报、强基计划、综合评价招生和学科竞赛等。

北京高考在线旗下拥有网站门户、微信公众平台等全媒体矩阵生态平台。平台活跃用户 40W+,网站年度流量数千万量级。用户群体立足于北京、辐射全国 31 省市。

北京高考在线平台一直秉承"精益求精、专业严谨"的建设理念,不断探索"K12教育+互联网+大数据"的运营模式,尝试基于大数据理论为广大中学和家长提供新鲜的高考资讯、专业的高考政策解读、科学的升学规划等,为广大高校、中学和教科研单位提供"衔接和桥梁纽带"作用。

平台自创办以来,为众多重点大学发现和推荐优秀生源,和北京近百所中学达成合作关系,累计举办线上线下升学公益讲座数百场,帮助数十万考生顺利通过考入理想大学,在家长、考生、中学和社会各界具有广泛的口碑影响力

未来,北京高考在线平台将立足于北京新高考改革,基于对北京高考政策研究及北京高校资源优势,更好的服务全国高中家长和学生。

Q 北京高考资讯