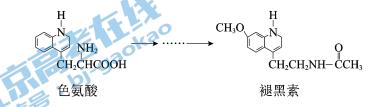


北京市通州区 2018 届高三二模理科综合化学试题

化学 2018.05

可能用到的相对原子质量: H1 C6 N7 O8 Na 23 Fe 56 Pb 207

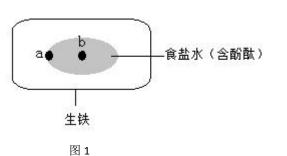

6. 科学技术的发展不仅改善了人们的生活,也帮助人类实现"上九天揽月、下五洋采'冰'"。下列没有涉及化学反应的是

A. 陶器烧制	B. 粮食酿醋	C. 开采得到可燃冰	D. 发射火箭
		HERRAL THE TANK THE T	

- 7. 下列说法不正确的是
 - A. 漂白粉和医用酒精均可用作消毒剂
 - B. 聚乙烯塑料用作食品包装材料,会造成环境污染
 - C. 防晒是为防止强紫外线引起皮肤蛋白质被灼伤变性
 - D. 硅胶、生石灰、还原铁粉,均可用于防止食品被氧化而变质
- 8. 室温下,向 10 mL pH=3 的 CH₃COOH 溶液中加入下列物质,对所得溶液的分析正确的是

	加入的物质	对所得溶液的分析
A	90 mLH ₂ O	由水电离出的c(H+)=10 ⁻¹⁰ mol·L ⁻¹
В	0.1 mol CH ₃ COONa固体	c(OH·)比原CH₃COOH溶液中的大
С	10 mL pH=1 的H ₂ SO ₄ 溶液	CH ₃ COOH 的电离程度不变
D	10 mL pH=11的NaOH溶液	$c(\text{Na}^+) = c(\text{CH}_3\text{COO}^-) > c(\text{OH}^-) = c(\text{H}^+)$

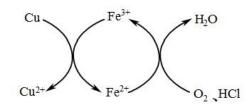
9. 褪黑素是一种诱导自然睡眠的体内激素,可由色氨酸转化得到。


下列说法不正确的是

- A. 色氨酸的化学式是 C₁₂H₁₀N₂O₂
- C. 褪黑素可发生水解反应
- 10. 研究金属腐蚀及防护的装置如图所示。
- B. 色氨酸可发生缩聚反应
- D. 褪黑素和色氨酸均可与 KMnO4 酸性溶液反应

官方微信公众号: bj-gaokao ¹ 咨询热线: 010-5751 5980

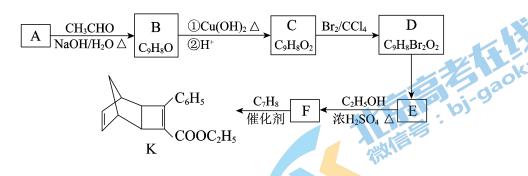
官方网站:www.gaokzx.com 微信客服:gaokzx2018



下列有关说法不正确的是

- A. 图 1: a 点溶液变红
- B. 图 1: a 点的铁比 b 点的铁腐蚀严重
- C. 图 2: 若 d 为锌,则铁不易被腐蚀
- D. 图 2: 正极的电极反应式为 O₂+4e⁻ +2H₂O =4OH⁻
- 11. 向铜屑、稀盐酸和铁盐的混合溶液中持续通入空气可制备氯化铜。其反应过程如图所示。

下列说法不正确的是

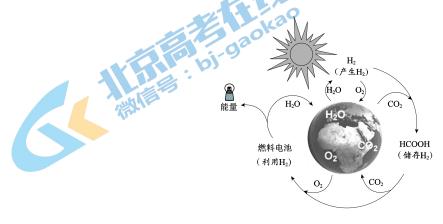

- A. Fe³⁺对该反应有催化作用
- B. 该过程中的 Fe³⁺可由 Fe(NO₃)₃ 提供
- C. 可用 K₃[Fe(CN)₆]溶液区分 Fe³⁺与 Fe²⁺
- D. 制备 $CuCl_2$ 的总反应为 $2Cu + O_2 + 4HCl = 2CuCl_2 + 2H_2O$
- 12. 用右图所示装置进行气体 x 的性质实验, 得出的实验结论正确的是

选项	实验操作		实验现象	实验结论	,	
	制备气体 x	溶液 a)	N. W. Y.	59374.203 Very 77341.2020.4	
A	乙醇与浓硫酸共	KMnO4 酸性	紫色褪去	C ₂ H ₄ 被氧化	气体x 尾气处理 → ▶ □ □ □ →	
	热至 170℃	溶液	R L R A	02214 1/2 1/18		
В	碳酸钠与醋酸溶	Na ₂ SiO ₃ 溶液	产生白色沉淀	H ₂ CO ₃ 的酸性强		
	液作用	9) 至自己机使	于 H ₂ SiO ₃		
	双氧水与二氧化	KI 淀粉溶液	溶液变蓝	O ₂ 能将I ⁻ 氧化为	I	
C	锰作用	KI VC/JJ FA IX	1月1人义皿	I_2	溶液 a	
D	溴乙烷与氢氧化	Br ₂ 的四氯化	橙红色褪去	C ₂ H ₄ 与 Br ₂ 发生		
D	钠醇溶液共热	碳溶液	世 红 口 梴 乙	加成反应		

25. (17分) 化合物 K 是有机光电材料中间体。由芳香族化合物 A 制备 K 的合成路线如下:

官方微信公众号: bj-gaokao 官方网站: www.gaokzx.com 咨询热线:010-5751 5980

己知:


 $\begin{array}{c} \text{RCHO+CH}_3\text{CHO} \xrightarrow{\text{NaOH/H}_2\text{O}} \text{RCH=CHCHO+H}_2\text{O} \end{array}$

回答下列问题:

- (1) A 的结构简式是
- (2) B中官能团是
- (3) D转化为E的反应类型是
- (4) 由 E 生成 F 的化学方程式是
- (5) C7H8的结构简式是_
- (6) 芳香族化合物 X 是 F 的同分异构体,该分子中除苯环外,不含其他环状结构,其苯环上只 学环境的氢。X 能与饱和碳酸氢钠溶液反应放出 CO2, 写出符合上述要求的 X 的结构简式:
- Br ,写出有关物质<mark>的结构简式(其他试剂任选)</mark>。 (7) 以环戊烷和 2-丁炔为原料制备化合物。

26. (13 分)甲酸(HCOOH)是一种可再生的储氢物质,其产生、储存和应用 H2的循环示意图如下。

(1) HCOOH 的结构式是

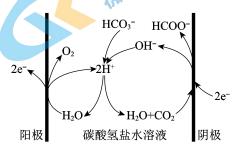
官方微信公众号: bj-gaokao 官方网站:www.gaokzx.com 咨询热线: 010-5751 5980

- (2) 产生 H₂: 上图中光催化产生 H₂ 的化学方程式是。
- (3) 储存 H₂:
- I. CO₂加氢法:

①已知: $2HCOOH(l) + O_2(g) = 2CO_2(g) + 2H_2O(l)$ $\Delta H = -510 \text{ kJ·mol}^{-1}$

$$2H_2(g) + O_2(g) = 2H_2O(l)$$
 $\Delta H = -572 \text{ kJ} \cdot \text{mol}^{-1}$

则
$$CO_2(g) + H_2(g) = HCOOH(l)$$
 $\Delta H = \underline{\hspace{1cm}}$

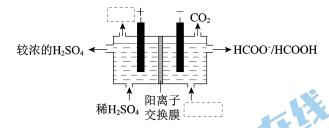

此反应的化学平衡常数表达式: K=_____

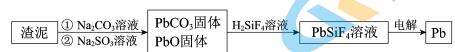
②增大压强, CO2的平衡转化率升高, 原因是____。

即使在高压和高温条件下, CO_2 的平衡转化率也不高,为实现 CO_2 加氢向甲酸的高效转化还可以采取的措施是。

Ⅱ. 电化学还原法:

在碳酸氢盐的水溶液中,CO2还原成甲酸的原理如图1所示。




图 1 碳酸氢盐水溶液中 CO2 电还原成甲酸的原理图

2 碳酸氢盐水溶液中 CO2 电还原成甲酸的装置

③图1中,阴极的电极反应式是。

④依据图 1, 在图 2 的方框中填出相应物质的化学式或离子符号。

27. (13分) 工业从废铅酸蓄电池的渣泥(主要成分为PbSO₄、PbO₂) 回收铅。RSR 工艺的主要流程如下:

(1) 铅酸蓄电池放电时总反应为: $Pb(s) + PbO_2(s) + 2H_2SO_4(aq) = 2PbSO_4(s) + 2H_2O(l)$

正极反应:
$$PbO_2(s) + SO_4^{2-}(aq) + 4H^+(aq) + 2e^- = PbSO_4(s) + 2H_2O(l)$$

负极反应:

(2) 向渣泥中加入 Na₂CO₃ 溶液将 PbSO₄转化为更难溶的 PbCO₃。

①用化学平衡移动原理解释其原因:

②工业上常用 NaHCO₃ 溶液代替 Na₂CO₃ 溶液,将 PbSO₄ 转化为 PbCO₃。PbSO₄ 与 NaHCO₃ 溶液或 Na₂CO₃ 溶液不同物质的量比时,PbSO₄ 的转化率见下表。

官方微信公众号: bj-gaokao 官方网站: www.gaokzx.com 咨询热线:010-5751 5980

I	$n(PbSO_4)$: $n(NaHCO_3)$	1:1.5	1:2	1:3
	PbSO4转化率/%	95.5	96.9	97.8
II	$n(PbSO_4)$: $n(Na_2CO_3)$	1:1.5	1:2	b 1:3
	PbSO4转化率/%	98	98	98

依据上表数据,物质的量比相同时,II 中 PbSO₄ 的转化率比 I 中的略大,原因是_____。

③上述反应除生成 $PbCO_3$ 外,还可能生成碱式碳酸铅[$2PbCO_3 \cdot Pb(OH)_2$],	二者受热都易分解生成 PbO。通
过实验确定产物中含有 2PbCO ₃ ·Pb(OH) ₂ ,则该实验操作及现象是	; 通过定量实验确定产物中
2PbCO ₃ ·Pb(OH) ₂ 的含量,则需测定的数据是。	

- (3) 渣泥中加入 Na₂SO₃ 溶液,利用其性质是____。
- (4) H₂SiF₄溶液溶解 PbCO₃ 的化学方程式是_____。
- 28. (15分)研究金属与硝酸的反应,实验如下。

实验(20℃)	现象
I. 过量铜粉、2 mL 0.5 mol/L HNO ₃	无色气体 (遇空气变红棕色),溶液变为蓝色
II. 过量铁粉、2 mL 0.5 mol/L HNO ₃	6 mL无色气体(经检测为H ₂),溶液几乎无色

- (1) I 中产生的无色气体是。
- (2) 研究Ⅱ中的氧化剂
- ① 甲同学认为该浓度的硝酸中 H^+ 的氧化性大于 NO_3^- ,所以 NO_3^- 没有发生反应。乙同学依据 I 和 II 证明了甲的说法不正确,其实验证据是_____。
- - ③补全 II 中 NO_3 -被还原为 NH_4 +的过程: NO_3 -+____e- NH_4 ++____ H_2O
- (3) 研究影响产生H₂的因素

实验	现象
III. 过量铁粉、2 mL 0.5 mol/L HNO3、40°C	3.4 mL气体(经检测为H ₂),溶液略带黄色
Ⅳ. 过量铁粉、2 mL 0.5 mol/L HNO ₃ 、60°C	2.6 mL气体(经检测为H ₂), 黄色溶液
V. 过量铁粉、2 mL 3 mol/L HNO ₃ 、20℃	无色气体 (遇空气变红棕色),深棕色溶液

资料: [Fe(NO)]2+在溶液中呈棕色。

- ④对比Ⅱ、Ⅲ、Ⅳ,温度不同时收集到氢气的体积不同,原因是____。
- ⑤ V 中无色气体是混合气体,则一定含有遇空气变红棕色的气体和____。

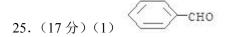
官方微信公众号: bj-gaokao 官方网站: www.gaokzx.com 咨询热线:010-5751 5980

(4) 根据实验,金属与硝酸反应时,影响硝酸的还原产物不同的因素有

bj-gaokao

AND DI- 9ao kao

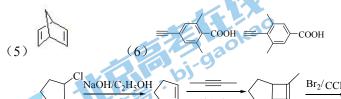
官方微信公众号: bj-gaokao 官方网站: www.gaokzx.com 咨询热线:010-5751 5980



通州二模化学参考答案

第一部分共20小题,每小题6分,共120分。

6. C 7. D 8. B 9. A 10. B 11. B 12. D

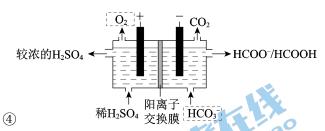

第二部分共11小题,共180分。

(2) 碳碳双键 醛基(或写结构简式)(3)消去反应

$$\bigcirc$$
 C≡C−COOH + CH₂CH₃OH $\stackrel{\text{\times K \times R \times K \times R \times C}}{\triangle}$ \bigcirc C≡C−COOCH₂CH₃ + H₂O

(4)

26. (13分)


(7)

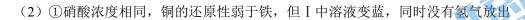
- (2) 2H₂O <u>光照</u> 2H₂↑+ O₂↑
- (3) ① $-31 \text{ kJ} \cdot \text{mol}^{-1}$

 $\frac{1}{c(\text{CO}_2) \cdot c(\text{H}_2)}$

②反应 $CO_2 + H_2 = HCOOH$ 是气体总分子数减少的反应,增大压强利于反应进行选择合适的催化剂,增大 $c(H_2)$

 $3CO_2 + H_2O + 2e^- = HCOO^- + OH^-$

27. (13分)


- (1) $Pb(s) + SO_4^2(aq) 2e = PbSO_4(s)$
- (2) ①PbSO₄ 浊液中存在平衡 PbSO₄(s) \Longrightarrow Pb²⁺(aq) + SO₄²⁻(aq),Na₂CO₃ 溶液中的 CO₃²⁻与 Pb²⁺结合生成 更难溶的 PbCO₃, c(Pb²⁺)降低,平衡正向移动,即发生反应 PbSO₄(s) + CO₃²⁻ (aq) \Longrightarrow PbCO₃(s) + SO₄²⁻ (aq)
- ②与 $PbSO_4$ 物质的量比相同时, Na_2CO_3 溶液中 $c(CO_3^{2-})$ 比 $NaHCO_3$ 溶液中的大
- ③取一定量样品充分干燥后加热,将产生的气体通过盛有无水硫酸铜的干燥管,无水硫酸铜变蓝色,说明样品含有 2PbCO₃·Pb(OH)₂

干燥后样品的质量 m_1 ,充分加热、冷却后固体的质量 m_2 (答案合理即得分)

官方微信公众号: bj-gaokao 官方网站: www.gaokzx.com 咨询热线:010-5751 5980

- (3) 还原性
- (4) $PbCO_3 + H_2SiF_4 = PbSiF_4 + CO_2\uparrow + H_2O$
- 28. (15分) (1) NO

②NO3-中氮元素的化合价为最高价,具有氧化性

取 II 中反应后的溶液,加入足量NaOH溶液并加热,产生有刺激性气味并能使湿润红色石蕊试纸变蓝的气体

$$3NO_3^- + 8 e^- + 10 H^+ = NH_4^+ + 3 H_2O$$

(3) ④相同条件下,温度升高时,化学反应速率增大,但NO3 的还原速率增大的更多

 $\textcircled{5}H_2$

(4) 金属的种类、硝酸的浓度、温度

官方微信公众号: bj-gaokao 官方网站: www.gaokzx.com 咨询热线:010-5751 5980