2020 北京丰台区高一(上)期末

物 理

(本试卷满分共100分;作答时长90分钟)

注意事项:

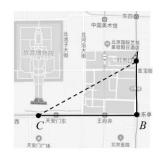
- 1. 答题前,考生务必先将答题卡上的学校、年级、班级、姓名、准考证号用黑色的签字笔填写清楚,并认真核对 条形码上的准考证号、 姓名,在答题卡的"条形码粘贴区"贴好条形码。
- 2. 本次考试所有答题均在答题卡上完成。选择题必须使用 2B 铅笔以正确填涂方式将各小题对应选项涂黑,如需改 动,用橡皮擦涂干净后再选涂其它选项。非选择题必须使用标准黑色字迹签字笔书写,要求字体工整、 字迹清
- 3. 请严格按照答题卡上题号在相应答题区内作答 🏅 超出答题区域书写的答案无效,在试题、 草稿纸上答题无
- 不要折叠、不要破损。 4. 请保持答题卡卡面清洁,不要装订

选择题 (共60分)

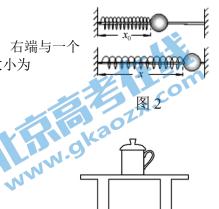
单项选择题(本题共20小题。在每小题给出的四个选项中,只有一个选项是符合题意的。每小题3分,共 60分)

请阅读下述文字,完成第1题、第2题、第3题。


物理量具有明确的定义和物理意义,可以用不同的方法测量,测量结果用数值和相应的单位来表示。

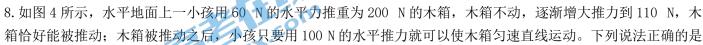

- 1. 下列物理量中, 描述物体惯性大小的物是
 - A. 质量
- B. 时间
- C. 加速度
- D. 速度

- 2. 下列物理量中, 既有大小又有方向的是
 - A. 质量
- B. 时间
- C. 路程
- WWW.9kaozx.com D. 加速度


- 3. 下列单位不是国际单位制中基本单位的是
 - A. 千克
- B. 秒
- C. 牛顿

- 4. 下列情景中的研究对象能视为质点的是
 - A. 研究地球的自转
 - B. 研究网球在空中运动的轨迹
 - C. 研究百米运动员跑步中的动作
 - D. 研究蹦床运动员转体动作
- 5. 一位同学去天安门广场观看升旗仪式。如图 1 所示,他从灯市口(图中 4 位置)出 发,沿东四南大街向南走到东单(图中 B位置),然后沿西长安街向西到达天安门广场 (图中 C位置). 他利用网络地图的测距功能测得: A、B间的距离约为 1. 0km, B、C间 的距离约为 1.6 km, $A \subset \mathbb{C}$ 间的距离约为 1.9 km. 由以上信息可知,他从灯市口到天安门广 场的位移大小约为

- C. 1.6 km
- D. 1.0 km
- 6. 如图 2 所示,一根劲度系数为 k、原长为 x_0 的轻质弹簧,其左端固定在墙上,右端与一个小球相连。当弹簧被拉伸至长度为 x 时(在弹性限度内),弹簧对小球的弹力大小为



A. kx_0

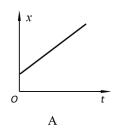
B. *kx*

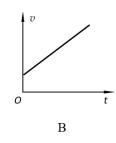
C. $k(x-x_0)$

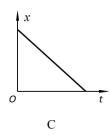
- D. $k(x-x_0)^2$
- 7. 如图 3 所示, 杯子静止在水平桌面上, 下列说法正确的是
 - A. 桌面受到的压力就是杯子的重力
 - B. 杯子受到的支持力是杯子发生形变产生的
 - C. 桌面对杯子的支持力与杯子对桌面的压力是一对平衡力
 - D. 桌面对杯子的支持力与杯子对桌面的压力是一对相互作用力

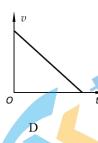
- A. 木箱与地面间的最大静摩擦力大小为 200 N
- B. 木箱与地面间的静摩擦力大小始终为 60 N
- C. 木箱与地面间的滑动摩擦力大小为 110 N
- D. 木<mark>箱与</mark>地面间的滑动摩擦力大小为 100 N

请阅读下述文字,完成第9题、第10题、第11题。




图 3


图 4


某同学站在地面上,以大小为 16 初速度把篮球竖直向上抛出,经过时间 16 ,篮球到达最高点,之后又落回抛出点。(篮球运动的过程不计空气阻力)

9. 下列是位移 x 或速度 v 随时间 t 变化的图像。能表示篮球在上升过程中运动规律的是

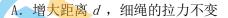
- 10. 篮球在最高点时的速度和加速度,下列说法正确的是
 - A. 篮球的速度为零,加速度为零
- B. 篮球的速度不为零,加速度为零
- C. 篮球的速度为零,加速度不为零
- D. 篮球的速度不为零, 加速度不为零
- 11. 篮球从最高点下落到抛出点的过程中, 下列说法正确的是
 - A. 所用时间小于 to
 - B. 所用时间大于 t
 - C. 落回<mark>抛</mark>出点的速度大于 w
 - D. 落回抛出点的速度等于 Ko

12. 伽利略创造的把实验、假设和逻辑推理相结合的科学方法,有力地促进了 人类科学认识的发展。利用如图 5 所示的装置做如下实验: 小球从左侧斜面上 的 0点由静止释放后沿斜面向下运动,并沿右侧斜面上升。斜面上先后铺垫三 种粗糙程度逐渐减小的材料时,小球沿右侧斜面上升到的最高位置依次为1、

2、3。根据三次实验结果的对比,可以得到的最直接结论是

- B. 如果小球不受力,它将匀速直线运动
- C. 如果小球受力,它将改变原来的运动状态
- D. 如果小球受力一定时,质量越大,它的加速度越小

13. 物体受多个共点力作用而处于平衡状态时,最终都可以等效为两个共点力平衡。 如图 6 所示, 学校操场上放了很多篮球, 其中篮球 A 的质量为 m, 重力加速度为 g, 关于篮球 A 周围与它接触的物体对篮球 A 作用力的合力,下列说法正确的是


A. 大小为 mg

B. 大小为0

C. 方向竖直向下

D. 方向不能确定

14. 如图 7 所示,用一根轻质细绳将一块小黑板对称悬挂在教室的墙壁上,小黑板上两个 挂钉间的距离为d。下列说法正确的是

- B. 减小距离 d ,细绳的拉力不变
- C. 增大距离 d, 细绳的拉力增大
- D. 减小距离 d, 细绳的拉力增大

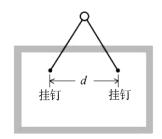
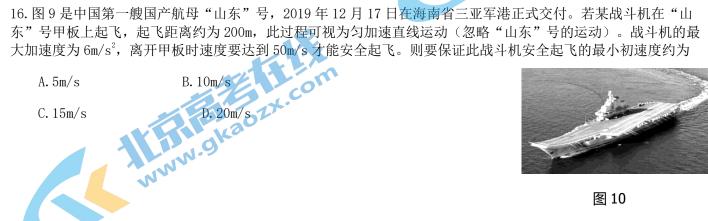



图 7

15. 如图 8 所示,倾角为 α 、质量为M的斜面体静止在水平地面上,质量为m的木块静止在斜面体上。关于瓮 和木块的受力,下列说法正确的是

- A. 木块受到的摩擦力大小是 mgcos a
- B. 木块对斜面体的压力大小是 mgsin a
- C. 地面对斜面体的摩擦力大小是 mgsin a cos a
- D. 地面对斜面体的支持力大小是 (M+m) g

C.15m/s

1600111111111111111111111111111111111

图 8

图 10

17. 图 10 是利用太空"质量测量仪"测质量的实验情景。一名航天员将自己 固定在支架一端,另一名航天员将将支架拉到指定位置,松手后支架对航天 员产生恒定的作用力 F,使航天员回到初始位置,测速装置测量出航天员复 位瞬间的速度 v和复位过程所用时间 t,从而计算出航天员的质量 m。下列关 于质量 加的表达式正确的是

B.
$$m = \frac{Fv}{t}$$

$$C. \quad m = \frac{F}{vt}$$

D.
$$m = Fvt$$

图 10

18. 某同学想利用所学力学知识研究地铁列车的运动情况,他把一根细绳的下端绑着一支圆珠 笔,细绳的上端用电工胶布临时固定在地铁列车车厢里竖直扶手上。在地铁列车运动的某段。 过程中,他观察到细绳偏离了竖直方向,并相对车厢保持静止。他用手机拍摄了当时情景, 如图 11 所示, 拍摄方向跟地铁列车运动方向垂直。根据这张照片, 你能推断出这段过程中

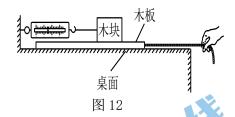
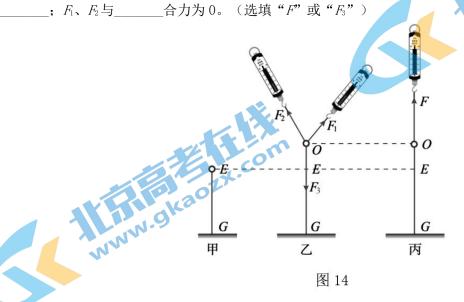

- A. 地铁列车加速度方向
- B. 地铁列车速度方向
- C. 地铁列车匀速运动
- D. 地铁列车一定加速运动

图 11

19. 图 12 为研究木板与木块之间摩擦力大小的实验装置,将一木块和木板叠放于水平桌面上,轻质弹簧测力计一 端固定,另一端用细线与木块水平相连。现在用绳子与长木板连接,用手向右水平拉绳子,使长木板在桌面上做 直线运动。当弹簧测力计的示数稳定时,关于示数大小,下列说法中正确的是

- A. 一定与木板对木块的静摩擦力大小相等
- B. 一定与木板对木块的滑动摩擦力大小相等
- C. 一定与木板所受地面的滑动摩擦力大小相等
- D. 一定与木板所受的拉力大小相等

20. 为了车辆的行驶安全, 高速公路上汽车行驶的最高速度为 120 km/h(约为 33m/s)。驾驶员从发现状况到采取 制动措施的时间称为"反应时间",约为 0. 5s; 从发现状况到停止运动汽车所走的路程称"安全距离"。若汽车在水平公路上刹车时,受到的阻力大小为车重的 0. 4 倍,g =10m/s²,下列说法正确的是A. "反应时间"内汽车行驶的路程约为 60m B. 刹车时汽车的加速度大小约为 0. 4m/s²


- C. 高速公路上汽车行驶的安全距离约为 152.6m
- D. 从驾驶员发现情况到汽车停下来的时间约为 8.25s

第二部分 非选择题 (共40分)

- 二**、填空题**(本题共 3 小题。每小题 4 分, 共 12 分)
- 21. 某实验小组利用打点计时器测量小车做匀变速直线运动时的瞬时速度。该实验小组选取了一条点迹清晰的纸 带,如图 13 所示。图中 0、4、B、C、D是按打点先后顺序依次选取的计数点,相邻计数点间的时间间隔为 T。他们发现,纸带上由0点到D点相邻计数点之间的距离逐渐增大,用 v_B 和 v_C 分别表示打点计时器打下B点 和 C 点时 V 车运动的速度,可判断 v_0 v_0 (选填"大于"或"小于")。测得 A、 C 两点间距离为 x,打 点计时器打下 B点时小车运动的速度 V_B =

图 13

22. 如图 14 甲所示,轻质小圆环挂在橡皮条的一端,另一端固定,橡皮条的长度为 GE。在图 14 乙中,用手通过两个弹簧测力计共同拉动小圆环,小圆环受到拉力 F_1 、 F_2 、 F_3 三力的共同作用,静止于 O 点,橡皮条伸长的长度为 EO。撤去 E、E,改用一个力 E 单独拉住小圆环,仍使它静止于 O 点,如图 14 丙所示。则 E 与 E 的合力是

23. 如图 15 甲所示,人站在力传感器上完成起立和下蹲动作。图 15 乙中呈现的是力传感器的示数随时间的变化情况。图 15 乙中 a 点,小明所受到的支持力______受到的重力(选填"大于"、"等于"或"小于"); b 点到 c 点的过程中,小明完成了_____动作(选填"起立"或"下蹲")。

图 15

三、**计算论证题**(本题共 5 小题。第 24 题、第 25 题各 5 分,第 26 题、第 27 题、第 28 题各 6 分,共 28 分)

解题要求:写出必要的文字说明、方程式和结果。有数值计算的题,结果必须明确写出数值和单位。

- 24. 如图 16 所示,光滑水平地面上有一个静止的物体,质量是 2kg,在水平恒力 F-4N 作用下开始运动,求:
 - (1) 5s 末物体速度 v 的多少;
 - (2) 5s 内物体位移 x 的大小。

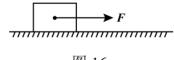


图 16

25. 生活中常用如图 17 所示的情景悬吊重物,现使悬绳 AO 和竖直方向成 θ 角, BO 沿水平方向。求:

- (1) 画出图中悬吊重物的受力示意图;
- (2) 若悬吊物质量为m,重力加速度为g,则绳AO和BO的对结点O的拉力各为多大。



图 17

26. 如图 18 甲所示,一种巨型娱乐器械可以使人体验超重和失重。一个可乘坐二十多个人的环形座舱套装在竖直柱子上,由升降机送上 76m 的高处,然后让座舱自由落下,不计阻力。落到离地面 31m 时,制动系统启动,座舱做匀减速运动到离地面 1m 时刚好停下。($g=10m/s^2$,竖直向下为正方向)求:

- (1) 自由下落的时间 t;
- (2) 在图 18 乙中定量画出座舱在整个下落的过程中运动的 v-t 图像;
- (3) 若座舱中某人用手托着质量为 0.2kg 的手机,当座舱下落到离地面 15m 的位置时,求手机对手的压力 F 的大

v/(m·s-1)
40
30
20
10
0
1 2 3 4 5 6 v/s

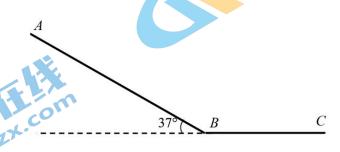
甲

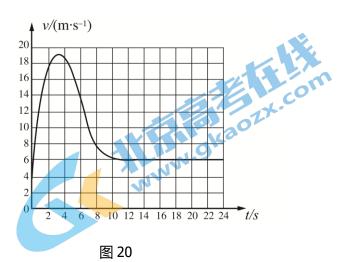
www.gkaozx

图 18

27. 如图 19 甲所示, "雪圈滑雪"是一种不受季节限制的四季游玩项目。我们可以将此情景简化为如图 19 乙所示 模型,图甲中倾斜滑道可视为斜面,且倾角 $\theta=37^{\circ}$,水平滑道可视为水平面。人坐上雪圈从顶端 A点由静止开始 Www.gkaozy.com 下滑,滑到斜面底部 B点后沿水平滑道再滑行一段距离,在 C点停下来(斜坡滑道末端与水平滑道间是平滑连接 的,速度大小不发生变化)。雪圈与两滑道间的动摩擦因数均为 0.5,,不计空气阻力。(sin37°=0.6, $\cos 37^{\circ} = 0.8$, g=10m/s²) 求:

- (1) 人和雪圈在倾斜滑道下滑时加速度 a 的大小;
- (2) 现测量 A 点距水平滑道高度为 30m,人在水平滑道上滑行的距离 x;




图 19

28. (1) 根据速度的定义 $v = \frac{\Delta x}{\Delta t}$, 当 Δt 极小时, $\frac{\Delta x}{\Delta t}$ 就可以表示物体在 t 时刻的瞬时速度(反映在位移——时

间图像中, $\frac{\Delta x}{\Delta t}$ 就是图像上 t 时刻对应点切线的斜率)。类比瞬时速度的定义,请写出瞬时速度的定义。

- (2) 研究"跳伞"运动时,在运动员身上装好传感器,用于测量运动员在不同时刻下落的速度。根据传感器测到的数据,得到如图 20 所示的 v-t 图像。为研究问题方便,将运动员和跳伞装备看成一个整体,总质量为 $80 \log k$ 不考虑运动员在水平方向的速度, $g=10 m/s^2$ 。
- a. 当速度达到最大值时,运动员和跳伞装备受到阻力f的大小;
- b. 减速过程中, 定性分析阻力大小的变化, 并简要说明理由。

2020 北京丰台区高一(上)期末物理

参考答案

第一部分 选择题 (共60分)

一、单项选择题(本题共 20 小题。每小题 3 分, 共 60 分)

题号	1	2	3	4	5	6	7	8	9	10
答案	A	D	С	В	В	C	D	D	D	С
分数	3	3	3	3	3	3	3	3	3	3
题号	11	12	13	14	15	16	17	18	19	20
答案	D	A	A	C	D	В	A	A	В	С
分数	3	3	3	3	3	3	3	3	3	3

第二部分 非选择题 (共40分)

二、填空题(本题共3小题。每小题4分,共12分)

题号	<u>1</u>	答案	分数
21		小于	2分
21		$\frac{x}{2T}$	2分
22		F	2分
22		F_3	2分 20
23		小于	2分4.9
20		起立	2分

三、**计算论证题**(本题共 5 小题。第 24 题、第 25 题各 5 分,第 26 题、第 27 题、第 28 题各 6 分,共 28 分)

题号	答案	分数	说明
24 (5分)	解: $(1) 物体加速度的大小$ $a = \frac{F}{m} = 2\text{m/s}^2$		按其它方法正确解答的,同样得分。可参照本评分标准分步给分。最后结果有单位的,必须写明单位,单位写错、缺单位的扣1分。
	5s 内物体的速度大小	1	
	v = at = 10 m/s	1分	

题号	答 案	分数	说明
	(2) 5s 内物体的位移大小	2分	
	$x = \frac{1}{2}at^2 = 25$ m	2分	100014
05 (5 ()	[FI]	1	同 第 24
25 (5分)	解: $F_1 = \frac{mg}{\cos \theta}$	3分	同第 24 题说明
	$\begin{cases} F_1 = \frac{mg}{\cos \theta} \\ F_2 = mg \tan \theta \end{cases}$	2分	
26 (6分)	解:		同第 24 题说明
	(1) 根据自由落体运动: $h = \frac{1}{2}gt^2$ 解得:	1分	
	$t = 3s$ (2) $v/\mathbf{m} \cdot \mathbf{s}^{-1}$		www.9kaoz
	30 20 10	1分2分	
	0 1 2 3 4 5 6 t/s	1分	
The same	(3) 座舱落到离地 $15m$ 时,加速度方向向上以手机为研究对象,根据牛顿第二定律: $F_N - mg = ma$	1分	
	解得: $F_{N} = 5N$ 根据牛顿第三定律: 手机对手的压力 F =5N。		

题号	答案	分数	说明
27 (6分)	解:		同第 24 题说明
	(1) 由正交分解得:	3分 (各1	
	$\int F_N = mg\cos\theta$	41.5	
	$\begin{cases} mg \sin \theta - f = ma \end{cases}$		010
		41	1 9 Ko
	其中: $f = \mu N$	1分	WW. 9kaozy
	解得:		
	$a = 2\text{m/s}^2$	1分	
	(2) 由几何关系知:		
	斜面长为 $x_1 = \frac{h}{\sin 37^\circ} = 50$ m		
	由于人和雪圈在 AB 做匀加速直线运动:	1分	
ww	$v_B^2 = 2ax_1$	1 //	
WV			
	解得:		
	$v_B = 10\sqrt{2}$ m/s		
	 人和雪圈在水平面上做匀减速直线运动,取		
	向右为正:		
	$\int -\mu m a = ma'$		
	$\begin{cases} -\mu mg = ma' \\ 0 - v_B^2 = 2a'x_2 \end{cases}$		
	(3 . 8 = 32		NWW.9kao
			Okac
	解得:	X	INW.
	$\left(a'5m/s^2\right)$		10
	$\begin{cases} a' = -5\text{m/s}^2\\ x_2 = 20\text{m} \end{cases}$		
	人在水平滑道上滑行的距离为 20m。		
	人在水平有理工有有的距离为 20m。		
	To the contract of the contrac		
	La Vaor		
	N.91		
W	N		

题号	答案	分数	说明
28 (6分)	解:		同第 24 题说明
	(1) 类比瞬时速度的定义:	2	32/3
	$a = \frac{\Delta v}{\Delta t}$, Δt 极小时, $\frac{\Delta v}{\Delta t}$ 即为 t 时刻的瞬时加速度	2分	WW.9kaoZX
	(2)	1	INV
	a. 当速度达到最大值时,由瞬时加速度的定义可知,此时加速度为零,	1分	
	f = mg = 800Nb. 根据图像可知,在减速过程中,图像切线斜率先增大后减小,则瞬时加速度先增大再	1分	
W	减小,根据牛顿第二定律: $f-mg=ma$		
MA	可知:	1分	

www.gkaozx.com