2020 北京一零一中学高二(上)期中

生 物

2020.11

ww.gkao

命题人: 高二生物备课组

审核人:安军

考生

- 1. 考生要认真填写考试信息
- 2. 本试卷共11页,分为两个部分。第一部分为选择题,30个小题(共30分);第二部分为非

须 选择题,6个小题(共70分)。

知 3. 试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用 2B 铅笔作 答,第二部分必须用黑色字迹的签字笔作答。

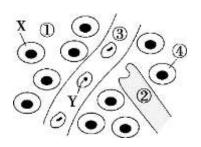
4.考试结束后,考生应将试卷和答题卡放在桌面上,待监考员收回答题卡。

第一部分选择题(每小题1分,共30分)

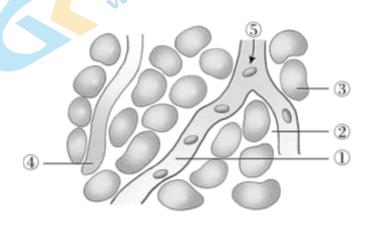
下列各题均有四个选项,其中只有一个是符合题意要求的。

1.下列过程发生在人体内环境中的是

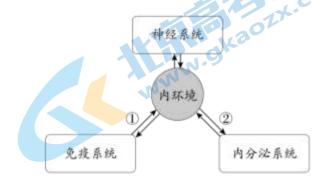
A.细胞因子作用于免疫细胞


B.葡萄糖分解为丙酮酸

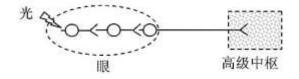
C.食物中的蛋白质被消化


D.浆细胞合成抗体

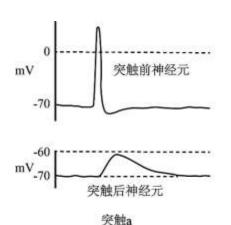
- 2.下列有关内环境组成的叙述,错误的是
 - A.血浆、组织液和淋巴液的成分相近,但是血浆中蛋白质含量较多
 - B.淋巴中含有细胞因子, 利于增强免疫功能
 - C.血浆中含有蛋白酶,可催化血红蛋白水解
 - D.组织液中钠离子浓度影响细胞外液渗透压
- 3.下列关于人体内环境的叙述,错误的是
 - A.心肌细胞内的 CO2浓度低于其生活的内环境
 - B.血管中的药物需经组织液进入肌细胞
 - C.血浆蛋白进入组织液会引起组织水肿
 - D.内环境的成分中有葡萄糖和无机盐等

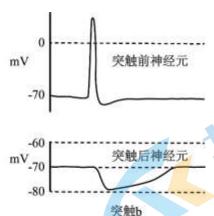

4.下图是家兔组织切片模式图,图中数字表示相应部位的液体,X、Y表示两种细胞。有关该组织的相关叙述,正 WWW.9kaozx.com 确的是

- A.X 细胞的内环境由①②③共同构成
- B.③渗透压的大小主要取决于血糖和蛋白质的含量
- C.③中无机盐浓度过高时,垂体释放的相关激素会增多
- D.①②③是机体进行正常生命活动和细胞代谢的场所
- 5.如图是细胞直接与内环境进行物质交换示意图,⑤处的箭头表示血液流动的方向。下列说法正确的是

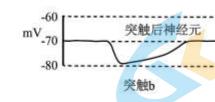

- A.②渗回①和渗入④的量相差不大
- B.若③为脑细胞, ⑤处的 O2浓度高于①处, 而 CO2浓度相反
- C.若③为肝脏细胞,饭后一小时⑤处的血糖浓度低于①处
- D.⑤的 pH 能够保持稳定是因为 HCO3-含量较多
- 6.如图表示内环境稳态的部分调节机制。下列叙述错误

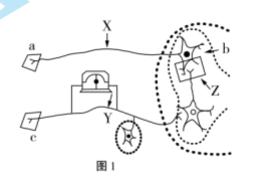
2 / 16


www.gkaozy


- A.若①表示免疫活性物质,则①包括抗体、细胞因子等
- B.内环境稳态的调节机制是神经-体液-免疫调节网络
- C.内环境稳态有利于新陈代谢过程中酶促反应的正常进行
- D.人体内检测到病毒说明其内环境稳态被破坏
- 7.下列有关内环境与稳态的叙述,正确的是
 - A.内环境稳态的调节依赖于血浆所含的一些物质
 - B.食物过咸时,垂体细胞会选择性表达抗利尿激素基因并将产物释放到体液中
 - C.长期营养不良导致浮肿时,血浆和组织液中的水分无法相互交换
 - D.在体外培养卵母细胞的培养液中添加适量血浆有助于维持内环境的稳态
- 8.下列与人体高级神经调节中枢无直接联系的活动是
 - A.上自习课时边看书边记笔记
 - B.开始上课时听到"起立"的声音就站起来
 - C.叩击膝盖下面的韧带引起小腿抬起
 - D.遇到多年不见的老朋友一时想不起对方的姓名
- 9.光线进入小鼠眼球刺激视网膜后,产生的信号通过下图所示过程传至高级中枢,产生视觉。有关上述信号 WWW.9kaoZ 传递过程的叙述错误的是

- A.光刺激感受器,感受器会产生电信号
- B.信号传递过程有电信号与化学信号之间的转换
- C.产生视觉的高级神经中枢在大脑皮层
- D.图中视觉产生的过程包括了完整的反射弧
- 10.科研人员给予突触 a 和突触 b 的突触前神经元以相同的电刺激,通过微电极分别测量突触前、后两神经元的膜 电位,结果如下图。据此判断不合理的是





www.9kao2

www.gkaoz

- A.静息状态下膜内电位比膜外低约 70mV
- B.突触 a 的突触后神经元出现了阳离子内流
- C.突触 a 和 b 分别为兴奋性突触和抑制性突触
- D.兴奋在突触前后两神经元间的传递没有延迟
- 11.图 1 表示某反射弧的相关结构,图 2 为图 1 中 Z 的亚显微结构模式图,下列有关叙述正确的是

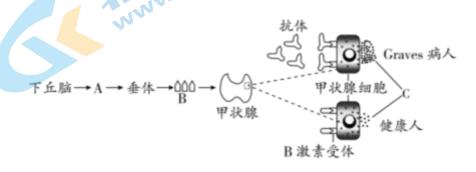


- A.有效刺激 X 处,可引起 a 发生反射并在大脑皮层产生痛觉
- B.有效刺激 Y 处, 电流表指针将发生 2 次方向相反的偏转
- C.图 2 中神经递质在突触间隙③中的移动需要消耗 ATP
- D.图 2 中结构④膜电位的变化与细胞膜外 K+的内流有关
- 12.食欲肽是下丘脑中某些神经元释放的神经递质,它作用于觉醒中枢的神经元,使人保持清醒状态。临床使用的 药物 M 与食欲肽竞争突触后膜上的受体,但不发挥食欲肽的作用。下列判断不合理的是
 - A.食欲肽以胞吐的形式由突触前膜释放
 - B.食欲<mark>肽通过进入突触后神经元发挥作用</mark>
 - C.食欲肽分泌不足机体可能出现嗜睡症状

- D.药物 M 可能有助于促进睡眠
- 13.下列关于神经递质与激素的叙述错误的是
 - A.识别神经递质的特异性受体只能分布在神经元膜上
 - B.激素在机体中发挥完生理作用后立即被灭活
 - C.神经递质只能由突触前膜释放,作用于突触后膜
 - D.识别某种激素的特异性受体只能分布在靶细胞或靶器官上
- 14.下丘脑体温调节中枢存在冷敏神经元和热敏神经元,它们的放电频率因体温变化而相应改变,如图中实线所示, C、W 曲线交于 S 点, 此点对应的温度为正常体温。下列说法正确的是

www.gkaozx.

www.gkaoz



注:放电频率即单位时间产生的兴奋次数

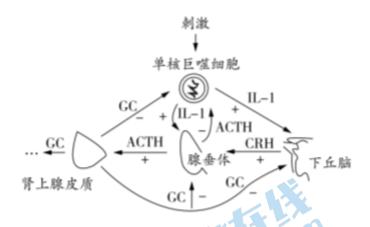
A.冷敏神经元的放电频率低于热敏神经元的放电频率时,体温低于正常值

- B.人感染流感病毒后 S 点左移, 干活出汗时 S 点右移
- C.某人体温 24 小时处在 S´点,则该时间段的产热量大于散热量
- D.体温持续高热会导致内环境稳态失调,需要采取降温措施
- 15.下列有关人体内激素的叙述,正确的是
 - A.运动时, 肾上腺素水平升高, 可使心率加快, 说明激素是高能化合物
 - B.饥饿时,胰高血糖素水平升高,促进糖原分解,说明激素具有酶的催化活性
 - C.进食后,胰岛素水平升高,其既可加速糖原合成,也可作为细胞的结构组分
 - D.青春期, 性激素水平升高, 随体液到达靶细胞, 与受体结合可促进机体发育
- 16.关于人体内激素的叙述,正确的是
 - A.激素的化学本质都是蛋白质

- B.因激素直接参与细胞内多种生命活动, 所以人体需要不断地产生激素
- C.激素在人体内含量较低,但有高效的生物催化作用
- D.激素在人体内作为信使传递信息而发挥作用
- 17.尿崩症是指由于各种原因使抗利尿激素(九肽激素)的产生或作用异常,使肾脏对水分的重吸收产生障碍。下 列相关叙述正确的是
 - A.该激素由垂体释放,作用于肾小管和集合管,使其对水的通透性减小
 - B.尿崩症患者常表现出多尿和多饮的症状,是由于其尿液渗透压较大
 - C.若尿崩症是因肾小管对该激素的反应障碍导致,则血浆中该激素的含量不低于正常值
 - D.若尿崩症由该激素的合成和释放量的减少导致,则可以通过口服该激素来治疗
- 18.如图表示健康人和 Graves 病人激素分泌的调节机制, A、B、C 为三种激素。下列有关叙述正确的是

- A.激素 A 随血液运至垂体并进入细胞促进相关物质合成
- B.图中抗体作用的受体与促甲状腺激素释放激素的受体相同
- C.由图分析可知 Graves 病患者可能会表现出代谢增强
- D.Graves 病患者的激素 A 和激素 B 的分泌水平较健康人高
- 19.右图为人体生长激素分泌的调节示意图。细胞 a 分泌的激素对生长激素的分泌具有促进作用,而细胞 b 分泌的激素对生长激素的分泌具有抑制作用。下列叙述中不正确的是

www.gkaoz

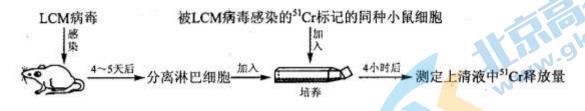


- A.下丘脑通过血液联系影响生长激素的分泌
- B.细胞 a 与细胞 b 分泌的激素有拮抗作用
- C.生长激素可与多种靶细胞结合发挥作用
- D.生长激素可作用于胸腺,促进 B 细胞分化
- NN.9kaoz 20. 先天性甲状腺功能减退症(甲减)可对哺乳动物生长发育造成严重影响。以大鼠为实验材料,检测甲减仔鼠 及补充甲状腺激素的甲减仔鼠的各项指标,结果见下表。

指标	正常仔鼠	甲减仔鼠	补充甲状腺激素的甲减仔鼠
甲状腺激素总量(pmol/L)	20.42	5.90	15.92
促甲状腺激素(TSH,mIU/L)	3.12	9.29	4.97
心肌重量 (mg)	68.27	41.29	65.66

结合上表分析甲状腺激素分泌的调节及其与心肌生长的关系,错误的是

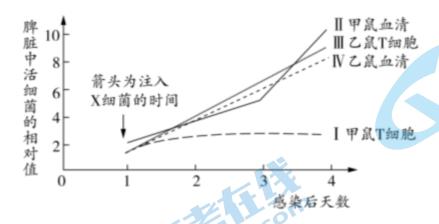
- A.TSH 的增加抑制了甲状腺激素的分泌
- B. 补充甲状腺激素后 TSH 的分泌减少
- C.甲状腺激素可促进心肌的生长
- D.补充甲状腺激素可用于治疗甲减
- 21.如图为内分泌腺及其分泌激素间的关系,其中"+"表示促进,"一"表示抑制。下列相关叙述错误的是 www.gkaozx.


- A.每种激素都能对其特定的靶器官、靶细胞起作用
- B.含有GC受体的有下丘脑、腺垂体、单核巨噬细胞等
- C.机体内 GC 含量保持相对稳定是因为存在负反馈调节机制
- D.若 GC 可升高血糖,那么胰高血糖素与 GC 在血糖平衡调节方面是相抗衡的作用

- 22.当脊椎动物的大脑发送一个神经信号来松弛血管壁的平滑肌时,由平滑肌附近的神经释放信号分子乙酰胆碱, 导致附近的上皮细胞产生 NO,由它来使平滑肌松弛,使血管扩张来增强血液流动。下列相关叙述中错误的是
 - A.大脑发送神经信号与神经纤维膜内外离子浓度变化有关
 - B.大脑支配上皮细胞产生 NO 的过程属于非条件反射
 - C.接受乙酰胆碱的信号与细胞膜表面的受体类型有关
 - D.上述生理过程的调节方式有神经调节也有体液调节
- 23. 关于免疫细胞的叙述,错误的是
 - A.淋巴细胞包括 B 细胞、T 细胞和巨噬细胞
 - B.血液和淋巴液中都含有 T 细胞和 B 细胞
 - C. 树突状细胞和 B 细胞都属于免疫细胞
 - D.浆细胞通过胞吐作用分泌抗体
- 24.下列关于抗原和抗体的叙述,不正确的是
 - A.抗体是由淋巴细胞产生的
 - B.抗原就是指侵入人体内的病原体
 - C.抗原和抗体的结合具有特异性
 - D.抗体是在抗原物质侵入人体后产生的
- 25.下列关于人体免疫细胞的叙述,不正确的是
 - A.巨噬细胞可吞噬病原体,也可加工处理病原体使抗原呈递在细胞表面
 - B.内环境中形成的抗原—抗体复合物可被巨噬细胞吞噬消化
 - C.T细胞产生的细胞因子在 B细胞的增殖和分化中具有重要作用
 - D.浆细胞能增殖分化成具有分裂能力的记忆细胞
- 26.人体免疫可分为非特异性免疫和特异性免疫。下列生理过程一定属于特异性免疫的是
 - A.皮肤、黏膜等抵御病原体的攻击
 - B.体液中杀菌物质消灭病原体
 - C.吞噬细胞吞噬病原体并将之消化



- D.抗体与相应的抗原发生免疫反应
- 27.下图所示实验能够说明



- A.病毒抗原诱导 B 细胞分化的作用
- B.细胞毒性 T细胞的作用
- C.病毒刺激淋巴细胞增殖的作用
- D.浆细胞产生抗体的作用
- 28.鸡霍乱病原菌易致鸡死亡。1880年,巴斯德用久置的鸡霍乱病原菌对鸡群进行注射,意外发现全部鸡存活。再次培养新鲜病原菌,并扩大鸡的注射范围,结果仅有部分鸡存活。进一步调查发现,存活鸡均接受过第一次注射。下列分析正确的是
 - A.第一次注射时, 所用的鸡霍乱病原菌相当于抗体
 - B.第一次注射后,鸡霍乱病原菌诱导存活鸡产生了抗性变异
 - C.第二次注射后,存活鸡体内相应记忆细胞参与了免疫反应
 - D.第二次注射后, 死亡鸡体内没有发生特异性免疫反应
- 29.神经递质乙酰胆碱与突触后膜的乙酰胆碱受体(AChR)结合,突触后膜兴奋,引起肌肉收缩。重症肌无力患者体内该过程出现异常,其发病机理如图所示。下列叙述错误的是

- A.物质 a 作为抗原参与激活 B 细胞增殖分化为浆细胞
- B.抗 a 抗体与物质 a 的结合物不能被巨噬细胞等清除
- C.物质 a 引发的上述免疫过程属于体液免疫
- D.患者体内乙酰胆碱与突触后膜的 AChR 特异性结合减少

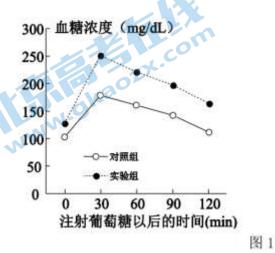
30.科学家利用小鼠进行特异性免疫研究时,进行了如下实验: 提取分离出对 X 细菌免疫过的小鼠甲和未对 X 细菌 www.gkaozx.com 免疫的小鼠乙体内的 T 细胞和血清,分别注入四组未接触 X 细菌的小鼠体内,一段时间后,分别注入等量的 X细菌,得到实验结果如图所示,下列有关分析错误是

- A. III组、IV组在该实验中起对照作用
- B. 由I、II两组实验结果说明 X 细菌生活在小鼠的内环境中
- C. II组与IV组相比,可知血清中的抗体不能有效抑制脾脏内的细菌繁殖
- D. 由该实验结果可得出小鼠对 X 细菌的免疫为细胞免疫

第二部分非选择题(共70分)

31. (7分)为研究神经干的兴奋传导和神经—肌肉突触的兴奋传递,将蛙的脑和脊髓损毁,然后剥制坐骨神经 腓肠肌标本,如图所示。实验过程中需要经常在标本上滴加任氏液(成分如表所示),以保持标本活性。请回答 www.gka 下列问题:

IT MIXIMON (SIL)						
含量						
6.5						
0.14						
0.12						
0.2						
0.01						
2.0						


任氏液成分(g/L

(1)任氏液中维持酸碱平衡的成分有 ,其 Na+/K+与体液中 的 Na+/K+ 接近。

	(2)任氏液中葡萄	菌糖的主要作用是提	供能量,若将其浓	度提高到 15%,标	本活性会显著降低,	主要是因为		
		o				14.7		
	(3)反射弧五个组	且成部分中,该标本	仍然发挥功能的部	分有		CO		
		品级的分子, 这你不		Л·H	www.c	302		
	(4)刺激坐骨神经	至,引起腓肠肌收缩	,突触前膜发生的	变化有		Ko		
			_°		NAMAN			
	(5)神经—肌肉匀	泛 触易受化学因素影	:响,毒扁豆碱可使:	乙酰胆碱酯酶失去	活性;肉毒杆菌毒素			
	` _				上述物质中可导致肌			
	79CF 113 - 4 - 7	3 3 17 11 13 27		11/4 1 /2/2/1/9/0		414404414		
					处的神经元,传递到			
	可使人体验到於	大快感,因而多巴胺	被认为是引发"奖赏	"的神经递质,下	图是神经系统调控多	巴胺释放的机制,		
	毒品和某些药物	加能干扰这种调控机	制,使人产生毒品或	成药物的依赖。				
	抑制性神经元	LIN.9"						
	-	NAN						
*								
	7	神经元1	=					
	释放多巴胺的							
	件红儿和天							
	(1) 释放多巴	胺的神经元中,多巴	巴胺储存在	内,当多巴胺	释放后,可与神经元	A 上的		
	结合,引发的	"奖赏中枢"产生欣忖	で感。			1		
	(2) 多巴胺释	放后, 在基释放的第	※ ※ ※ ※ ※ ※ ※ ※ ※ ※	巴胺的转运蛋白.	该蛋白可以和甲基	苯丙胺(冰毒的 主		
					,长期使用冰	1/2		
		受体减少,当停止的			No. of the last of	造成毒品依赖。		
					- In			
					九兴奋 时,其突触前原	•		
	•				使释放多巴胺的神经			
	胺的释放量				长时间过量使用吗?			
	元的兴奋性	减弱,抑制性功能降	锋低,最终使得	,"奖赏'	"效应增强。停用时,	造成药物依赖。		
33.	(9分)母亲孕其	期肥胖或高血糖会增	曾加后代患肥胖和代	谢疾病的风险。科	学家用小鼠进行实验	佥,研究孕前高脂		
	饮食对子代代谢	讨调节的影响。	51X.					
		13 Oko						
	(1) 从孕前4周开始,实验组雌鼠给予高脂饮食,对照组雌鼠给予正常饮食,食物不限量。测定妊娠第20天							
	两组孕 鼠相	关代谢指标,结果如	口卜表。					
	分组	体重 (g)	胰岛素抵抗指数	脂肪含量	痩 素 含 量	脂联素含量		
				(mg/dL)	(ng/dL)	(µg/dL)		
		I	11	/ 16				

对照组	38.8	3.44	252	3.7	10.7
实验组	49.1	4.89	344	6.9	5.6

- ①正常情况下,体脂增加使脂肪细胞分泌的瘦素增多,瘦素经_____运输作用于下丘脑饱中枢,抑制食欲,减少脂肪合成,该机制为_____调节。表中结果显示,实验组孕鼠瘦素含量_____,但瘦素并没有发挥相应作用,这种现象称为"瘦素抵抗"。
- ②脂联素是脂肪细胞分泌的一种多肽激素,能增加细胞对胰岛素的敏感性。据此推测实验组孕鼠出现胰岛素抵抗的原因是
- (2) 24 周龄时,给两组子代小鼠空腹注射等量的葡萄糖或胰岛素,检测结果如图 1。

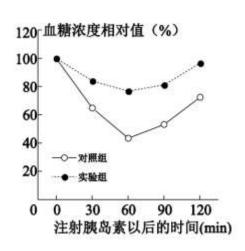
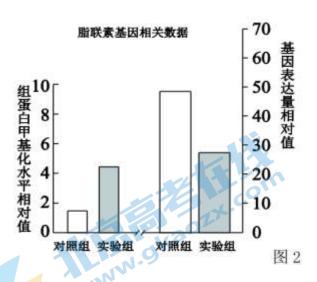
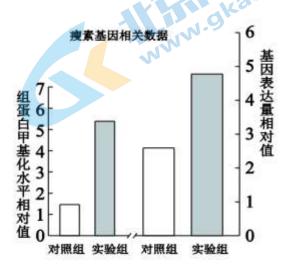




图 1 结果显示,与对照组相比,实验组小鼠_____,推测实验组子鼠出现了"胰岛素抵抗"。

(3)研究发现,幼鼠脂肪组织的瘦素和脂联素含量与各自母鼠均呈正相关。测定幼鼠脂联素基因和瘦素基因的表达量、基因启动子所在区域的组蛋白甲基化水平,结果如图 2。

	②瘦素基因的表达量与其启动子所在区域的组蛋白甲基化水平呈相关。但由于血脂过高会抑制瘦
	素向脑内运输,导致瘦素抵抗,引起肥胖。
	(4) 根据该项研究结果,对备孕或孕期女性提出合理建议:。
34.	(16分)"健康中国,万步有约"是由中国疾病控制中心发起、在全国推广的健走活动,旨在传递健康生活理
	念,推动慢性病防治工作。参赛者佩戴健走计步器,记录每日健走步数、强度和时间。请回答下列问题:
	(1) 在健走活动中,骨骼肌细胞产生大量的 CO_2 和热量, CO_2 刺激位于的呼吸中枢,从而加快呼吸
	运动。产生的热量主要在的体温调节中枢的调节下,通过汗液的蒸发、皮肤和
	呼气等方式散出,从而维持体温相对稳定。
	(2) 健走过程中,只饮水未进食,人体血糖不断消耗,但仍然维持在 3.9mmol/L 左右,该过程中补充血糖的
	途径有。参与血糖调节的主要是胰高血糖素和
	两种相互拮抗的激素,后者通过促进组织细胞加速、利用及储存转化葡萄糖,以降低血
	糖浓度。
	(3) 长期坚持健走活动可促进人体内淋巴细胞数量增加,从而增强人体的(填"特异性"或"非特
	异性")免疫功能。其中淋巴细胞中的 T 细胞分化、发育、成熟的场所
	为T细胞和T细胞。健康强大的免疫系统包括、和
	,免疫系统通过其免疫防御、和的功能,实现在维持稳态中的作用。
35.	(13分)寨卡热是由寨卡病毒引起的一种蚊媒传染病,其症状为发热、头痛、关节痛、肌肉痛等。如图所示为人
	体感染该病毒后的信息传输过程。回答下列问题。
	暴卡 免疫 内覆性致热源 神经 内分泌 系统 系统 系统 系统 系统 系统 系统 人名 医皮肤
	Tin.gle
	(1) 寨卡病毒侵入机体后,巨噬细胞等对病毒的处理和清除过程与(细胞器)直接相关。体液免疫
	过程中,在受刺激的辅助性 T 细胞分泌的和抗原刺激的共同作用下, B 细胞开始分裂、分
	化,其中大部分分化为细胞,该类细胞能分泌的免疫活性物质是,该物
	质的化学本质是。
	(2) 若该病毒侵入到细胞内部,免疫系统将细胞内的病毒释放到内环境的途径是。在机体清除
	病毒的过程中,细胞毒性 T 细胞能够分裂、分化形成的新的细胞毒性 T 细胞和。
	(3) 感染寨卡病毒后,"致热源"直接作用于体温调节中枢,会导致体液中激素的分泌量增加,
	(3) 恐朵紫下柄每后, 致恐烷 直接作用于体温调 1 中枢, 云寻致体液中
	细胞飞砌加区,停血开向。内内,构入云芯见加内散州,冰凶足。
	(4) 当上述病人处于退烧过程中时,临床表现为大量出汗,此时
	化,引起分泌量增多,作用于并促进其对水的重吸收。
	(5)病人感染病毒后恢复正常的过程中,通过人体的调节网络,最终实现稳态。
	12 / 16

芬太尼:从"天使"到"魔鬼"

芬太尼一直是我国及国际严格管控的强效麻醉性镇痛药。2019年4月1日,国家药品监督管理局将芬太尼类物质列入《非药用类麻醉药品和精神药品管制品种增补目录》。芬太尼通常用作镇痛药物或麻醉剂,药理作用与吗啡类似。在同类药物中,芬太尼是药效非常强的一种,它的作用强度大约相当于吗啡的50~100倍,海洛因的25~40倍。芬太尼的脂溶性很强,易于透过血脑屏障而进入脑,具有镇痛作用强、起效较快等特点,适用于临床各种手术麻醉、术后镇痛,但长期使用会成瘾。

芬太尼作用机理是: 当其与某神经元上的阿片受体结合后,抑制Ca²⁺内流、促进K⁺外流,导致突触小泡无法与突触前膜接触阻止痛觉冲动的传递,从而缓解疼痛;同时芬太尼作用于脑部某神经元受体,促进多巴胺释放,让人产生愉悦的感觉。芬太尼的典型副作用包括嗜睡、困倦和恶心,更严重的副作用包括低血压、呼吸抑制和长期使用使快感阈值升高(维持相应的神经兴奋水平需要更多的药物),导致的成瘾。如果没有医学专业人员迅速解决,呼吸能力降低可能导致死亡。为了控制过量风险,芬太尼作为治疗药物的使用都在医生的严密监控下进行。医生在调整药物剂量时都非常谨慎小心。

真正严重的问题是所谓非医用芬太尼(毒品),不法分子很容易用化学原料直接合成新的衍生物,不需要从罂粟中提取。这些新生的物质,作用效果与芬太尼相似,能镇痛、有成瘾性,作用强度往往更高。因此,把芬太尼当作是海洛因之类传统毒品的"低成本替代品"和"增强剂"。而不法分子不可能像药理学家那样,对它们进行毒理研究。结果就是,因芬太尼类物质滥用而死亡的人节节攀高。

芬太尼可以是缓解人类疾苦的"天使",也可以成为让人坠入成瘾深渊的"魔鬼",而这一切都取决于人们如何去管理和使用它。

(1) 神经调节的基本方	式为。疼痛由一些	些强烈的伤害性刺激使痛觉感受器产生的兴奋(神经	全冲动
以	式沿着神经纤维传导,在	产生痛觉。芬太尼作用于下图中的	(tj
写"受体1"或"受体2"),使兴奋性递质的释放量	,从而起到镇痛效果。	
受体1	→冲动传入	www.gke	
(2) 芬太尼的作用是		性,导致呼吸能力降低。CO2对呼吸中枢的调节属	于
调节。			
(3) 你如何理解文章中と	出现的芬太尼既是"天使",也是"赝	蟹鬼"这一说法?。	

2020 北京一零一中学高二(上)期中

生 物

题号	1	2	3	4	5	6	7	8	9	10
答案	A	С	A	С	В	D	A	C	D	D
题号	11	12	13	14	15	16	17	18	19	20
答案	В	В	A	D	D	D	С	С	D	A
题号	21	22	23	24	25	26	27	28	29	30
答案	D	В	A	В	D	D	В	С	В	В

除特殊注明,每空1分

31.(8分)

(1) NaHCO₃ NaH₃PO₄

细胞外液(组织液)

- (2)葡萄糖浓度升高使任氏液高于标本细胞内液浓度,导致细胞失水
- (3)传出神经、效应器(2分)(答出一个给1分,错答不得分)
- (4)产生动作电位

突触小泡向前膜移动并与它融合,同时释放神经递质

(5)肉毒杆菌毒素、箭毒

32.(8分)

(1)突触小泡 多巴胺受体

(2)增加 减弱

(3)内流 受到抑制 减少 多巴胺释放量增加

33.(9分)

(1)①体液(血液) (负)反馈 增加

- ②实验组孕鼠脂联素含量低,造成机体细胞对胰岛素信号不敏感
- (2)注射葡萄糖后血糖浓度始终较高,注射胰岛素后血糖浓度下降幅度较低
- (3)①提高 抑制基因的转录(表达) ②正
- (4)减少脂类的摄入(合理饮食)、坚持锻炼、控制体重,维持正常血脂水平

34.(16分)

(1)脑干 下丘脑 毛细血管舒张

(2)肝糖原分解为葡萄糖、脂肪酸等非糖物质转化为葡萄糖(2分,一点1分)

胰岛素 摄取

(3)特异性 胸腺 辅助性

细胞毒性 免疫器官 免疫细胞

免疫活性物质 免疫自隐 免疫监视

35.(13分)

(1)溶酶体 细胞因子 浆 抗体 蛋白质

(2)细胞毒性 T 细胞和靶细胞结合,导致靶细胞裂解死亡,释放抗原 记忆 T 细胞

(3)(肾上腺素和)甲状腺 人体代谢加快,耗氧最增加,由于供氧不足,肌肉组织进行无氧呼吸,乳酸含量升高,刺激相关感受器兴奋,通过传入神经传入大脑皮层形成酸痛感觉

NWW.9kaoz

(5)神经一体液一免疫

36.(16分)(每空2分)

(1)反射 局部电流(电信号) 大脑皮层 受体 1 减少

(2)降低 体液

(3)芬太尼是"天使"是因为芬太尼作镇痛药物或麻醉剂、起效较快: 芬太尼是"魔鬼"因为芬太尼类物质有成瘾性, 其滥用而至死的人数节节攀高。("天使"1分,"魔鬼"1分)

关于我们

北京高考资讯是专注于北京新高考政策、新高考选科规划、志愿填报、名校强基计划、学科竞赛、高中生涯规划的超级升学服务平台。总部坐落于北京,旗下拥有北京高考在线网站(www.gaokzx.com)和微信公众平台等媒体矩阵。

目前,北京高考资讯微信公众号拥有30W+活跃用户,用户群体涵盖北京80%以上的重点中学校长、老师、家长及考生,引起众多重点高校的关注。 北京高考在线官方网站:www.gaokzx.com

> 北京高考资讯 (ID: bj-gaokao) 扫码关注获取更多

WWW.9kaozx.

