2023 北京北师大实验中学高二(上)期中

学 数

姓名 学号 成绩 班级

1. 本试卷共 4 页, 共五道大题, 24 道小题, 答题卡共 8 页, 满分 150 分,

考 考试时间 120 分钟.

生

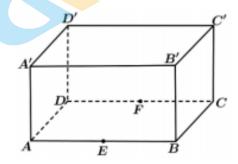
2. 在试卷和答题卡上准确填写班级、姓名、学号.

须 3. 试卷答案一律填写在答题卡上,在试卷上作答无效.

4. 在答题卡上,选择题须用 2B 铅笔将选中项涂黑涂满,其他试题用黑色 知 字迹签字笔作答.

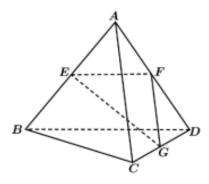
第 I 卷 (共 100 分)

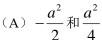
- 一、选择题(本大题共8小题,每小题5分,共40分)
- 1. 如图, E, F 分别是长方体 ABCD A'B'C'D' 的棱 AB, CD 的中点, 则 $\overrightarrow{AB} + \overrightarrow{CF}$ 等于 ()



- (A) AD'
- (B) $\overrightarrow{AC'}$ (C) \overrightarrow{DE} (D) \overrightarrow{AE}
- 2. 直线 $x + \sqrt{3}y 1 = 0$ 的倾斜角是 ()

- (A) 30° (B) 60° (C) 120° (D) 150°
- 3. 若抛物线 $x^2 = ay$ 的焦点坐标为(0,1),则其准线方程为 ()
- (A) x = -1 (B) x = 1 (C) y = -1 (D) y = 1
- 4. 如图,已知四面体 ABCD 的所有棱长 都等于 a, E, F, G 分别是棱 AB, AD, DC 的中点.则 $\overline{GF} \cdot \overline{AC}$ 与 Www.gaokzx.co $\overline{EF} \cdot \overline{BC}$ 分别等于 ()





(B)
$$\frac{a^2}{2} \pi - \frac{a^2}{4}$$

(C)
$$\frac{a^2}{2} \pi \frac{a^2}{4}$$

(A)
$$-\frac{a^2}{2} \pi \frac{a^2}{4}$$
 (B) $\frac{a^2}{2} \pi - \frac{a^2}{4}$ (C) $\frac{a^2}{2} \pi \frac{a^2}{4}$ (D) $-\frac{a^2}{2} \pi \frac{a^2}{2}$

5. 设椭圆 $\frac{x^2}{25} + \frac{y^2}{9} = 1$ 的两个焦点为 F_1, F_2 , 过点 F_1 的直线交椭圆于 A, B 两点,如果 |AB| = 8 , 那么

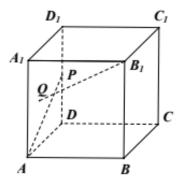
 $|AF_2|+|BF_2|$ 的值为 ()

- (A) 2 (B) 10 (C) 12 (D) 14 5. 抛物结··² 6. 抛物线 $y^2 = 4x$ 上的点到其焦点的距离的最小值为 ()
- (A) $\frac{1}{2}$ (B) 1 (C) 2 (D) 4
- 7. 若双曲线 $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ 的焦点 F(3,0) 到其渐近线的距离为 $\sqrt{5}$,则双曲线的方程为()

(A) $\frac{x^2}{4} - \frac{y^2}{5} = 1$ (B) $\frac{x^2}{5} - \frac{y^2}{4} = 1$ (C) $\frac{x^2}{3} - \frac{y^2}{6} = 1$ (D) $\frac{x^2}{6} - \frac{y^2}{3} = 1$

WWW.gaokzx.co 8. 如图,在正方体 $ABCD-A_1B_1C_1D_1$ 中,点 P 为棱 DD_1 的中点,点 Q 为面 ADD_1A_1 内一点, $B_1Q\perp AP$

则(



(A) $S_{\triangle A_l D_l Q} = 2S_{\triangle A_l AQ}$ (B) $2S_{\triangle A_l D_l Q} = S_{\triangle A_l AQ}$

(C) $2S_{\triangle A_i D_i Q} = 3S_{\triangle A_i AQ}$ (D) $3S_{\triangle A_i D_i Q} = 2S_{\triangle A_i AQ}$

- 二、填空题(本大题共6小题,每小题5分,共30分)
- 9. 若经过点(3,a),(-2,0)的直线与直线x-2y+3=0垂直,则a=____.
- 10. 已知平面 α 的法向量为(2,-4,-2),平面 β 的法向量为(-1,2,k),若 α // β ,则k=_____.

- 11. 已知两圆 $C_1: x^2+y^2+2x+3y+1=0$ 和 $C_2: x^2+y^2+4x+3y+2=0$ 相交,则圆 C_1 与圆 C_2 的公共弦所在直线的方程为_____.
- 12. 设 $\vec{v}_1 = 1, 2, -2, \vec{v}_2 = -2, 3, 2$ 分别是空间两直线 l_1, l_2 的方向向量,则直线 l_1, l_2 所成角的大小为______.
- 13. 已知P(2,3)是直线l上一点,且 $\vec{n}=(1,-2)$ 是直线l的一个法向量,则直线l的方程为_____.
- 14. 设点 F_1, F_2 分别为椭圆 $C: \frac{x^2}{4} + y^2 = 1$ 的左、右焦点,点 P 是椭圆 C 上任意一点,若使得 $\overrightarrow{PF_1} \cdot \overrightarrow{PF_2} = m$ 成立的点恰好是 4个,则实数 m 的一个取值可以为_____.

三、解答题(本大题共3小题,共30分)

15. (本小题满分 10 分)

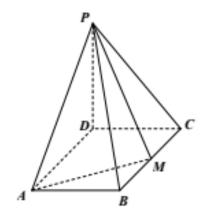
已知 $\triangle ABC$ 的三个顶点A(8,5),B(4,-2),C(-6,3),求经过两边AB和AC的中点的直线的方程.

16. (本小题满分 10 分)

已知直线 l: x+my-3=0 与圆 $C: (x-2)^2+(y+3)^2=9$.

- (I) 若直线l与圆C相切,求实数m的值;
- (Π) 当m=-2时,直线l与圆C交于点E,F,设O为原点,求 $\triangle EOF$ 的面积.
- 17. (本小题满分 10 分)

如图,四棱锥 P-ABCD 的底面是矩形, PD 上底面 ABCD, PD=DC=1, AD=2, M 为 BC 的中点.



 (Π) 求平面 PAM 与平面 PCD 所成的角的余弦值.

第Ⅱ卷(共50分)

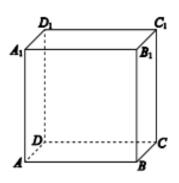
四、填空题(本大题共4小题,每小题4分,共16分)

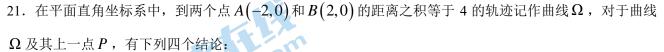
18. 在空间直角坐标系中,已知点 A(1,m,1), B(-1,1,2), C(3,-2,1), D(1,-3,2),若 A,B,C,D 四点共面,则 m=_____.

19. 已知双曲线 $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1(a > 0, b > 0)$ 的右焦点为 F , 过点 F 作 x 轴的垂线 l, l 在第一象限与双曲线

及其渐近线分别交于 A,B 两点. 若点 A 是线段 FB 的中点,则双曲线的离心率为 .

20. 如图,在长方体 $ABCD - A_1B_1C_1D_1$ 中, $AA_1 = AB = 2$, BC = 1,点 P 在侧面 A_1ABB_1 上.若点 P 到直 线 AA_1 和 CD 的距离相等,则 A_1P 的最小值是___



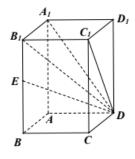


- ①曲线 Ω 关于 x 轴对称;
- ②曲线上有且仅有一点P,满足|PA| = |PB|;
- ③曲线 Ω 上所有的点的横坐标 $x \in \left[-2\sqrt{2}, 2\sqrt{2}\right]$, 纵坐标 $y \in \left[-1, 1\right]$;
- ④|PA|+|PB|的取值范围是 $\left[2\sqrt{2},5\right]$.

其中,所有正确结论的序号是 .

五、解答题(本大题共3小题,共34分)

22. (本小题满分 12 分) 如图,直四棱柱 $ABCD - A_lB_lC_lD_l$ 中,底面 ABCD 是边长为 1 的正方形,点Ewww.gaokzy.com 在棱BB,上



(I) 求证: $A_1C_1 \perp DB_1$;

 (Π) 从条件①、条件②、条件③这三个条件中选择两个作为已知,使得 DB_1 上平面 EA_1C_1 ,并给出证明.

条件①: E 为 BB_1 的中点;

条件②: BD_1 // 平面 EA_1C_1 ;

条件③: $DB_1 \perp BD_1$.

(III) 若E为 BB_1 的中点,且点D到平面 EA_1C_1 的距离为1,求 BB_1 的长度.

23. (本小题满分 12分)

已知椭圆 $\Gamma: \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1(a > b > 0)$ 的左、右顶点分别为 A_1, A_2 ,上、下顶点分别为 $B_2, B_1, |B_1B_2| = 2\sqrt{2}$, 四边形 $A_1B_1A_2B_2$ 的周长为 $8\sqrt{2}$.

- (I) 求椭圆 Γ 的方程;
- (Π) 设点 F 为椭圆 Γ 的左焦点,点 $T\left(-3,m\right)$,过点 F 作 TF 的垂线交椭圆 Γ 于点 P,Q ,连接 OT 与 PQ 交于点 H . 试判断 $\frac{|PH|}{|HQ|}$ 是否为定值?若是,求出这个定值;若不是,说明理由.

24. (本小题满分 10 分)

n 个有次序的实数 $\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_n$ 所组成的有序数组 $(\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_n)$ 称为一个 \vec{n} 维向量,其中 \vec{a}_i $(i=1,2\cdots,\vec{n})$ 称为该向量的第 i 个分量。特别地,对一个 \vec{n} 维向量 $\vec{a} = (\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_n)$,若 $|\vec{a}_i| = 1$, $i=1,2\cdots\vec{n}$,称 \vec{a} 为 \vec{n} 维信 号 向量 。 设 $\vec{a} = (\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_n)$, $\vec{b} = (\vec{b}_1, \vec{b}_2, \cdots, \vec{b}_n)$,则 \vec{a} 和 \vec{b} 的 内 积 定 义 为 $\vec{a} \cdot \vec{b} = \sum_{i=1}^n \vec{a}_i \vec{b}_i$,且 $\vec{a} \perp \vec{b} \Leftrightarrow \vec{a} \cdot \vec{b} = 0$.

- (I) 直接写出 4 个两两垂直的 4 维信号向量.
- (Ⅱ) 证明: 不存在 14 个两两垂直的 14 维信号向量.
- (III) 已知 k 个两两垂直的 2024 维信号向量 $\vec{x}_1, \vec{x}_2, \cdots, \vec{x}_k$ 满足它们的前 m 个分量都是相同的,求证: $\sqrt{km} < 45$.

参考答案

第 [卷(共100分)

- 一、选择题(本大题共8小题,每小题5分,共40分)
- 1. D 2. D 3. C 4. A
- 5. C 6. B 7. A 8. A
- 二、填空题(本大题共5小题,每小题5分,共25分)
- 9. $-10 \ 10. \ 1$ 11. 2x+1=0 12. $\frac{\pi}{2}$
- 13. x-2y+4=0
- 三、解答题(本大题共3小题,共35分)
- 15. (本小题满分 13 分)

解:设AB和AC的中点分别为D,E,

因为
$$A(8,5)$$
, $B(4,-2)$, $C(-6,3)$,所以 $D(6,\frac{3}{2})$, $E(1,4)$

(或求一点, *BC* 斜率) 所以直线 *DE* 的方程为: $\frac{y-4}{x-1} = \frac{\frac{3}{2}-4}{6-1}$,

整理得: x+2y-9=0,

经过两边 AB 和 AC 的中点的直线的方程为 x+2y-9=0.

- 16. (本小题满分 12 分)
- 解: (I) $m = \frac{4}{3}$.
- (Π) 当m = -2时直线l: x 2y 3 = 0,

点C到直线l的距离为 $\sqrt{5}$. 求得 $\left| EF \right| = 4$,

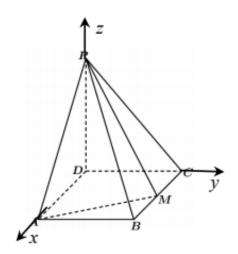
原点 O 到直线 l 的距离为 $h = \frac{3\sqrt{5}}{5}$, $\triangle EOF$ 的面积为 $S = \frac{1}{2}|EF| \cdot h = \frac{6\sqrt{5}}{5}$.

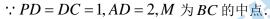
- 17. (本小题满分 10 分)
- 解:(I)证明:因为四棱锥P-ABCD的底面是矩形,

所以AD//BC,又因为ADeq平面PBC,BCeq平面PBC,

所以 AD// 平面 PBC

 (Π) 解: 以点 D 为坐标原点, DA、DC、DP 所在直线分别为 x、y、z 轴建立如图所示的空间直角坐标系 D-xyz,





$$D(0,0,0), A(2,0,0), M(1,1,0), P(0,0,1),$$

$$\therefore \overrightarrow{PA} = (2,0,-1), \overrightarrow{PM} = (1,1,-1),$$

设平面 PAM 的法向量为 $\vec{n} = (x, y, z)$,

$$\therefore \begin{cases} \vec{n} \cdot \overrightarrow{PA} = 0, \\ \vec{n} \cdot \overrightarrow{PM} = 0, \end{cases} \text{BP} \begin{cases} 2x - z = 0, \\ x + y - z = 0. \end{cases}$$

$$\Leftrightarrow z = 2$$
, \emptyset $x = 1, y = 1$ $\vec{n} = (1,1,2)$

:: 平面 PCD 的法向量为 $\vec{m} = (1,0,0)$,

$$\therefore \cos \langle \vec{m}, \vec{n} \rangle = \frac{\vec{m} \cdot \vec{n}}{|\vec{m}| |\vec{n}|} = \frac{1 \times 1 + 0 \times 1 + 0 \times 2}{\sqrt{1^2 + 0^2 + 0^2} \cdot \sqrt{1^2 + 1^2 + 2^2}},$$

 \therefore 平面 PAM 与平面 PCD 所成的角的余弦值 $\frac{\sqrt{6}}{6}$.

第Ⅱ卷(共50分)

四、填空题(本大题共3小题,每小题5分,共15分)

18. 2 19.
$$\frac{2\sqrt{3}}{3}$$
 20. $\sqrt{3}$

五、解答题(本大题共3小题,共35分)

22. (本小题满分 13 分)

解: (I) 连结 BD, B_1D_1 .

由直四棱柱 $ABCD - A_1B_1C_1D_1$ 知, $BB_1 \perp$ 平面 $A_1B_1C_1D_1$,

又 A_1C_1 \subset 平面 $A_1B_1C_1D_1$,所以 $BB_1 \perp A_1C_1$.

因为 $A_1B_1C_1D_1$ 为正方形,所以 $A_1C_1 \perp B_1D_1$. 又 $B_1D_1 \cap BB_1 = B_1$,

所以 A_1C_1 上平面 D_1DBB_1 .

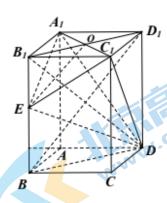
又 $DB_1 \subset$ 平面 D_1DBB_1 ,所以 $A_1C_1 \perp DB_1$.

NWW.9aokzx (Π) 选条件①、条件③,可使 $DB_1 \perp \text{平面 } EA_1C_1$. 证明如下: 设 $A_1C_1 \cap B_1D_1 = O$,连结 OE, BD_1 又E,O分别是 BB_1,B_1D_1 的中点,所以 $OE//BD_1$.

因为 $DB_1 \perp BD_1$, 所以 $DB_1 \perp OE$.

由(I)知 A_1C_1 上平面 D_1DBB_1 ,所以 A_1C_1 上 DB_1 .

又 $A_1C_1 \cap OE = O$, 所以 $DB_1 \perp$ 平面 EA_1C_1 .



 (Π) 选条件②、条件③,可使 $DB_1 \perp \text{平面 } EA_1C_1$. 证明如下:

设 $A_1C_1 \cap B_1D_1 = O$, 连结OE.

因为 BD_1 // 平面 EA_1C_1 , BD_1 \subset 平面 D_1DBB_1 ,平面 D_1DBB_1 个平面 $EA_1C_1 = OE$,所以 BD_1 //OE .

因为 $DB_1 \perp BD_1$, 所以 $DB_1 \perp OE$.

由(I)知 A_1C_1 上平面 D_1DBB_1 ,所以 $A_1C_1 \perp DB_1$.

又 $A_1C_1 \cap OE = O$, 所以 $DB_1 \perp$ 平面 EA_1C_1 .

(III) 设 $BB_1 = 2t(t>0)$.

因为 DA, DC, DD, 两两垂直,

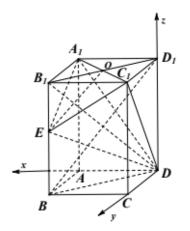
如图,以D为原点,建立空间直角坐标系D-xyz,则D(0,0,0), $A_1(1,0,2t)$, $C_1(0,1,2t)$,E(1,1,t),所 $\ \ \ \ \overrightarrow{A_1C_1} = (-1,1,0), \ \overrightarrow{EA_1} = (0,-1,t).$

设平面
$$DA_1C_1$$
 的法向量为 $\vec{n} = (x, y, z)$,则
$$\begin{cases} \vec{n} \cdot \overrightarrow{A_1C_1} = 0, \\ \vec{n} \cdot \overrightarrow{EA_1} = 0, \end{cases}$$
即
$$\begin{cases} -x + y = 0, \\ -y + tz = 0. \end{cases}$$

令 z = 1, 则 x = y = t, 于是 $\vec{n} = (t, t, 1)$, $\overrightarrow{DE} = (1, 1, t)$.

点D到平面 $EA_{1}C_{1}$ 的距离为

则
$$d = \frac{|\vec{n} \cdot \vec{DE}|}{|\vec{n}|} = \frac{|3t|}{\sqrt{2t^2 + 1}} = 1$$
,解得 $t = \frac{\sqrt{7}}{7}$,所以 $BB_1 = \frac{2\sqrt{7}}{7}$.



23. (本小题满分 12 分)

解: 依题意可得:
$$\begin{cases} 2b = 2\sqrt{2}, \\ 4\sqrt{a^2 + b^2} = 8\sqrt{2} \end{cases}$$
 解得 $a^2 = 6, b^2 = 2$.

所以椭圆
$$\Gamma$$
 的方程为 $\frac{x^2}{6} + \frac{y^2}{2} = 1$.

(Π) $\frac{|PH|}{|HQ|}$ 为定值 1,理由如下:

由T(-3,m),F(-2,0), 显然斜率存在, $k_{TF}=-m$,

$$\stackrel{\underline{}}{=} m = 0 \, \mathbb{R}^{\dagger}, \quad \frac{\left| PH \right|}{\left| HQ \right|} = 1.$$

当 $m \neq 0$ 时,直线PQ过点F且与直线TF垂直,则直线PQ方程为 $y = \frac{1}{m}(x+2)$.

显然 $\Delta > 0$.

设
$$P(x_1, y_1), Q(x_2, y_2)$$
,则 $x_1 + x_2 = -\frac{12}{m^2 + 3}, x_1 x_2 = \frac{12 - 6m^2}{m^2 + 3}$.

则
$$P,Q$$
 中点 $x = \frac{x_1 + x_2}{2} = -\frac{6}{m^2 + 3}$. 直线 OT 的方程为 $y = -\frac{m}{3}x$,

由
$$\begin{cases} y = \frac{1}{m}(x+2), \\ y = -\frac{m}{3}x \end{cases}$$
 得 $x_H = -\frac{6}{m^2+3}$, 所以 H 为线段 PQ 的中点, 所以 $\frac{|PH|}{|HQ|} = 1$. 综上 $\frac{|PH|}{|HQ|}$ 为定值 1.

24. (本小题满分10分)

解: (I)
$$(1,1,1,1),(-1,-1,1,1),(-1,1,-1,1),(-1,1,1,-1)$$
.

- (П) 假设存在 14 个两两垂直的 14 维信号向量 $\overrightarrow{y_1}, \overrightarrow{y_2}, \cdots, \overrightarrow{y_{14}}$,
- :: 将这 14 个向量的某个分量同时变号或将某两个位置的分量同时互换位置,任意两个向量的内积不变,
- ∴ 不妨设 $\vec{y}_1 = (1,1,\dots,1), \vec{y}_2 = (1,1,1,1,1,1,1,-1,-1,-1,-1,-1,-1,-1)$,
- $\vec{y}_1 \cdot \vec{y}_3 = 0 \therefore \vec{y}_3 \neq 7$ 个分量为 -1

设 \vec{y} 3的前7个分量中有r个-1,则后7个分量中有7-r个-1

$$\vec{y}_2 \cdot \vec{y}_3 = r \cdot (-1) + (7 - r) + (7 - r) + r \cdot (-1) = 0 \therefore r = \frac{7}{2},$$

∴ 不存在 14 个两两垂直的 14 维信号向量.

(III) 任取 $\mathbf{i}, j \in \{1, 2, ..., k\}$, 计算内积 $\vec{x}_i \cdot \vec{x}_j$, 将所有这些内积求和得到S, 则

$$S = \vec{x}_1^2 + \vec{x}_2^2 + \dots + \vec{x}_k^2 = 2024k$$

设 $\vec{x}_1, \vec{x}_2, \dots, \vec{x}_k$ 的第k个分量之和为 c_i ,则从每个分量的角度考虑,每个分量为S 的贡献为 c_i^2

$$\therefore S = c_1^2 + c_2^2 + \dots + c_{2024}^2 \ge c_1^2 + c_2^2 + \dots + c_m^2 = k^2 m$$

 $\therefore 2024k \ge k^2m : km \le 2024 < 2025 : \sqrt{km} < 45$.

北京高一高二高三期中试题下载

京考一点通团队整理了【2023 年 10-11 月北京各区各年级期中试题 &答案汇总】专题,及时更新最新试题及答案。

通过【**京考一点通**】公众号,对话框回复【**期中**】或者点击公众号底部栏目<**试题专区**>,进入各年级汇总专题,查看并下载电子版试题及答案!

