2023 北京理工大附中高一(下)期中

数 学

审核人: 金永涛, 考试时间: 90 分钟

- 一、选择题: 共10小题,每小题4分,共40分.
- 1. 若 $\sin \alpha < 0$,且 $\tan \alpha > 0$,则 α 是
- A. 第一象限角
- B. 第二象限角
- C. 第三象限角
- NWW.9aokzx.cor D. 第四象限角

- 2. 函数 $f(x) = \sin\left(\frac{x}{2} + \frac{\pi}{3}\right)$ 的最小正周期为 ()
- Α. π

C. 4π

D. 6π

- 3. 已知向量 $\vec{a} = (2,1)$, $\vec{b} = (-1,1)$, 则 $\left| 2\vec{a} \vec{b} \right| = ($

C. $\sqrt{26}$

D. 6

- 4. 己知向量 \vec{a} , \vec{b} 满足 \vec{a} =1, $\vec{a} \cdot \vec{b}$ =-1, 则 $\vec{a} \cdot (2\vec{a} \vec{b})$ =

D. 0

- 5. 下列函数中,在 $\left[0,\frac{\pi}{2}\right]$ 上递增的偶函数是()
- A. $y = \sin \frac{x}{2}$
- B. $y = \tan(-x)$ C. $y = \cos 2x$
- D. $y = |\sin x|$
- 6. 设函数 $f(x) = \cos\left(\omega x \frac{\pi}{6}\right)$ 的最小正周期为 $\frac{\pi}{5}$,则它的一条对称轴方程为(
- A. $x = \frac{\pi}{12}$ B. $x = -\frac{\pi}{12}$ C. $x = \frac{\pi}{15}$

- 7. 设 \vec{a} , \vec{b} 是非零向量," $\vec{a}\cdot\vec{b}=\left|\vec{a}\right|\left|\vec{b}\right|$ "是" $\vec{a}//\vec{b}$ "的
- A. 充分而不必要条件

B. 必要而不充分条件

C. 充分必要条件

- D. 既不充分也不必要条件
- 8. 将函数 $y = \sin(2x + \frac{\pi}{5})$ 的图象向右平移 $\frac{\pi}{10}$ 个单位长度,所得图象对应的函数
- A. 在区间 $\left[\frac{3\pi}{4}, \frac{5\pi}{4}\right]$ 上单调递增
- B. 在区间[$\frac{3\pi}{4}$, π]上单调递减

C. 在区间[$\frac{5\pi}{4}$, $\frac{3\pi}{2}$]上单调递增

- D. 在区间[$\frac{3\pi}{2}$, 2π]上单调递减
- 9. 在平面直角坐标系中,角 α 与 β 的顶点在原点,始边与x轴正半轴重合,终边构成一条直线,且

$$\sin \alpha = \frac{\sqrt{3}}{3}$$
, $\lim \cos(\alpha + \beta) = ($

A. 1

B.
$$\frac{1}{3}$$

C.
$$-\frac{1}{3}$$

10. 已知点A(0,0), B(1,0), $C\left(\frac{1}{2},\frac{\sqrt{3}}{2}\right)$.若平面区域D由所有满足 $\overrightarrow{AP} = \lambda \overrightarrow{AB} + \mu \overrightarrow{AC}$ 的点P组成(其

中 $1 \le \lambda \le 2$, $0 \le \mu \le 1$), 则 $\overrightarrow{AP} \cdot \overrightarrow{BC}$ 的取值范围为()

A.
$$\left[0,\frac{1}{2}\right]$$

$$C. \left[-\frac{1}{2}, 0 \right]$$

D.
$$[-1,0]$$

二、填空题: 本大题共5小题,每小题4分,共20分,把答案填在题中横线上。

11. 若
$$\tan \alpha = \frac{1}{6}$$
,则 $\tan \left(\alpha - \frac{\pi}{4}\right) = \underline{\hspace{1cm}}$.

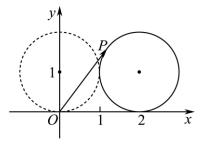
12. 设
$$\alpha \in (0,\pi)$$
,且 $\cos \alpha = -\frac{1}{2}$,则 α 为_____.

13. 在 $\triangle ABC$ 中,点 M, N满足 $\overrightarrow{AM} = 2\overrightarrow{MC}$, $\overrightarrow{BN} = \overrightarrow{NC}$, 若 $\overrightarrow{MN} = x\overrightarrow{AB} + y\overrightarrow{AC}$,则 $x = \underline{\hspace{1cm}}$, $y = \underline{\hspace{1cm}}$

14. 已知函数
$$f(x) = \sin(2x + \varphi) \left(|\varphi| < \frac{\pi}{2} \right)$$
. 若对 $\forall x \in \mathbb{R}$, $f(x) \le f\left(\frac{\pi}{3}\right)$ 恒成立,则 $\varphi =$ ______.

15. 如图,在平面直角坐标系 xOy 中,一单位圆的圆心的初始位置在(0,1),此时圆上一点 P 的位置在

(0,0) , 圆在x轴上沿正向滚动. 当圆滚动到圆心位于(2,1)时, \overline{OP} 的坐标为 NNW.9aokzx.c



三、解答题: 本大题共 4 小题, 共 40 分.解答应写出文字说明,证明过程或演算步骤。

16. 已知角 α 的顶点与原点O重合,始边与x轴的正半轴重合,它的终边过点 $P\left(-\frac{3}{5},-\frac{4}{5}\right)$

(1) 求
$$\sin\left(\alpha + \frac{\pi}{2}\right)$$
 的值;

(2) 若角 β 满足 $\cos \beta = \frac{5}{13}$,求 $\sin(\alpha + \beta)$ 的值.

17. 在平面直角坐标系中,已知向量
$$\overrightarrow{m} = \left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right), \overrightarrow{n} = \left(\sin x, \cos x\right), x \in \left(0, \frac{\pi}{2}\right).$$

- (1) 若 \vec{n} $\perp \vec{n}$, 求 $\tan x$ 的值;
- (2) 若 $_{m}$ 与 $_{n}$ 的夹角为 $\frac{\pi}{3}$, 求x的值.

18. 某同学用"五点法"画函数 $f(x) = A\sin(\omega x + \varphi)$,($\omega > 0$, $|\varphi| < \frac{\pi}{2}$)在某一个周期内的图象时,列表并填入了部分数据,如下表:

х		$\frac{\pi}{3}$		$\frac{5\pi}{6}$	77
$\omega x + \varphi$	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
$A\sin(\omega x + \varphi)$	0	5.00		-5	0

- (1) 请将上表数据补充完整,并直接写出函数 f(x) 的解析式;
- (2) 求 f(x) 在区间 $\left[-\frac{\pi}{2}, 0\right]$ 上的最大值和最小值;
- (3) 将 y = f(x) 图象上所有点向左平移 $\theta(\theta > 0)$ 个单位长度,得到 y = g(x) 的图象.若 y = g(x) 图象的一个对称中心为 $\left(\frac{5\pi}{12}, 0\right)$,求 θ 的最小值.
- 19. 定义: 若函数 f(x) 的定义域为 D,且存在非零常数 T ,对任意 $x \in D$, f(x+T) = f(x) + T 恒成立,则称 f(x) 为线周期函数, T 为 f(x) 的线周期.
- (1) 下列函数 $1.y = 2^x$, $2.y = \log_2 x$, 3.y = [x] (其中[x]表示不超过x的最大整数),是线周期函数的是______(直接填写序号);
- (2) 若g(x) 为线周期函数, 其线周期为T, 求证: G(x) = g(x) x 为周期函数;
- (3) 若 $\phi(x) = \sin x + kx$ 为线周期函数, 求k 的值.

参考答案

- 一、选择题: 共10小题,每小题4分,共40分.
- 1. 【答案】C

【解析】

- 象限,N. 920 k2 【详解】 $\sin \alpha < 0$,则 α 的终边在三、四象限; $\tan \alpha > 0$ 则 α 的终边在三、 $\sin \alpha < 0$, $\tan \alpha > 0$, 同时满足,则 α 的终边在三象限.

2. 【答案】C

【解析】

【分析】根据周期公式
$$T = \frac{2\pi}{|\omega|}$$
计算可得.

【详解】函数
$$f(x) = \sin\left(\frac{x}{2} + \frac{\pi}{3}\right)$$
的最小正周期 $T = \frac{2\pi}{\frac{1}{2}} = 4\pi$.

故选: C

3. 【答案】C

【解析】

【分析】求出 $2\vec{a}-\vec{b}$ 的坐标,再由模的坐标表示计算.

【详解】因为
$$\vec{a} = (2,1)$$
, $\vec{b} = (-1,1)$,

所以 $2\vec{a} - \vec{b} = (5,1)$,

所以
$$|2\vec{a}-\vec{b}|=\sqrt{5^2+1^2}=\sqrt{26}$$
,

故选: C.

4. 【答案】B

【解析】

【详解】分析:根据向量模的性质以及向量乘法得结果.

详解: 因为
$$\vec{a} \cdot (2\vec{a} - \vec{b}) = 2\vec{a}^2 - \vec{a} \cdot \vec{b} = 2|\vec{a}|^2 - (-1) = 2 + 1 = 3$$
,

所以选 B

点睛: 向量加減乘: $\bar{a}\pm\bar{b}=(x_1\pm x_2,y_1\pm y_2),\bar{a}^2=|\bar{a}|^2,\bar{a}\cdot\bar{b}=\left|\bar{a}\left|\cdot\right|\bar{b}\left|\cos\left\langle\bar{a},\bar{b}\right\rangle\right|$

5. 【答案】D

【解析】

【分析】根据基本初等函数的性质判断即可.

【详解】对于 A:
$$y = \sin \frac{x}{2}$$
 为奇函数,故 A 错误;

对于 B: $y = \tan(-x)$ 为奇函数,故 B 错误;

对于 C: $y = \cos 2x$ 为偶函数, 但是函数在 $\left[0, \frac{\pi}{2}\right]$ 上单调递减, 故 C 错误;

对于 D: $y = f(x) = |\sin x|$, 则 $f(-x) = |\sin(-x)| = |-\sin x| = f(x)$, 故 $y = |\sin x|$ 为偶函数, WWW.9aokZX.

且
$$x \in \left[0, \frac{\pi}{2}\right]$$
时 $y = \left|\sin x\right| = \sin x$,函数在 $\left[0, \frac{\pi}{2}\right]$ 上单调递增,故 D 正确;

故选: D

6. 【答案】B

【解析】

【分析】由题得 $f(x) = \cos\left(10x - \frac{\pi}{6}\right)$, 再依次代入检验即可得答案.

【详解】解: 因为函数 $f(x) = \cos\left(\omega x - \frac{\pi}{6}\right)$ 的最小正周期为 $\frac{\pi}{5}$,

所以
$$\frac{\pi}{5} = \frac{2\pi}{\omega}$$
,解得 $\omega = 10$

所以
$$f(x) = \cos\left(10x - \frac{\pi}{6}\right)$$
,

所以当 $x = \frac{\pi}{12}$ 时, $10x - \frac{\pi}{6} = \frac{2\pi}{3}$,不是函数 $y = \cos x$ 的对称轴,故错误;

当
$$x = -\frac{\pi}{12}$$
 时, $10x - \frac{\pi}{6} = -\pi$, 是函数 $y = \cos x$ 的对称轴, 故正确;

当
$$x = \frac{\pi}{15}$$
 时, $10x - \frac{\pi}{6} = \frac{\pi}{2}$, 不是函数 $y = \cos x$ 的对称轴, 故错误;

当
$$x = -\frac{\pi}{15}$$
 时, $10x - \frac{\pi}{6} = -\frac{5\pi}{6}$, 不是函数 $y = \cos x$ 的对称轴, 故错误;

故选: B

7. 【答案】A

【解析】

【详解】 $\vec{a} \cdot \vec{b} = |\vec{a}| \cdot |\vec{b}| \cos \langle \vec{a}, \vec{b} \rangle$,由已知得 $\cos \langle \vec{a}, \vec{b} \rangle = 1$,即 $\langle \vec{a}, \vec{b} \rangle = 0$, $\vec{a} / / \vec{b}$.而当 $\vec{a} / / \vec{b}$ 时, $\langle \vec{a}, \vec{b} \rangle$ 还 可能是 π ,此时 $\vec{a}\cdot\vec{b}=-\left|\vec{a}\right|\left|\vec{b}\right|$,故" $\vec{a}\cdot\vec{b}=\left|\vec{a}\right|\left|\vec{b}\right|$ "是" $\vec{a}//\vec{b}$ "的充分而不必要条件,故选 A. 考点: 充分必要条件、向量共线.

8. 【答案】A

【解析】

【分析】由题意首先求得平移之后的函数解析式,然后确定函数的单调区间即可.

【详解】由函数图象平移变换的性质可知:

将 $y = \sin\left(2x + \frac{\pi}{5}\right)$ 的图象向右平移 $\frac{\pi}{10}$ 个单位长度之后的解析式为:

$$y = \sin \left[2\left(x - \frac{\pi}{10}\right) + \frac{\pi}{5} \right] = \sin 2x.$$

则函数的单调递增区间满足: $2k\pi - \frac{\pi}{2} \le 2x \le 2k\pi + \frac{\pi}{2}(k \in \mathbb{Z})$,

$$\mathbb{H} k\pi - \frac{\pi}{4} \le x \le k\pi + \frac{\pi}{4} (k \in \mathbb{Z}),$$

令
$$k = 1$$
 可得一个单调递增区间为: $\left[\frac{3\pi}{4}, \frac{5\pi}{4}\right]$.

函数的单调递减区间满足: $2k\pi + \frac{\pi}{2} \le 2x \le 2k\pi + \frac{3\pi}{2} (k \in \mathbb{Z})$,

$$\mathbb{P} k\pi + \frac{\pi}{4} \le x \le k\pi + \frac{3\pi}{4} (k \in \mathbb{Z}),$$

令 k=1 可得一个单调递减区间为: $\left\lceil \frac{5\pi}{4}, \frac{7\pi}{4} \right\rceil$, 本题选择 A 选项.

【点睛】本题主要考查三角函数的平移变换,三角函数的单调区间的判断等知识,意在考查学生的转化能 力和计算求解能力.

9. 【答案】C

【解析】

【分析】根据角 α 与 β 的终边构成一条直线得 $\beta = \alpha + \pi + 2k\pi, (k \in \mathbb{Z})$,利用诱导公式及二倍角的余码 【详解】由题意,角 α 与 β 的顶点在原点,终边构成一条直线,所以 $\beta = \alpha + \pi + 2k\pi, (k \in \mathbf{Z})$, 所以 $\cos(\alpha + \beta) = \cos(2\alpha + \pi + 2k\pi)$ 公式即可求解.

MMM.Ö

所以
$$\cos(\alpha+\beta) = \cos(2\alpha+\pi+2k\pi) = \cos(2\alpha+\pi)$$

$$=-\cos 2\alpha = -(1-2\sin^2 \alpha) = 2\sin^2 \alpha - 1$$
,

所以
$$\cos(\alpha + \beta) = 2\sin^2 \alpha - 1 = 2 \times (\frac{\sqrt{3}}{3})^2 - 1 = -\frac{1}{3}$$
 故选: C.
10. 【答案】D

故选: C.

10. 【答案】D

【解析】

【分析】由题可得 \overrightarrow{AP} . \overrightarrow{BC} 关于 λ , μ 的表达式,后由不等式性质可得答案.

【详解】由题可得 $\overrightarrow{AP} = \lambda \overrightarrow{AB} + \mu \overrightarrow{AC} = \left(\lambda + \frac{\mu}{2}, \frac{\sqrt{3}}{2}\mu\right), \overrightarrow{BC} = \left(-\frac{1}{2}, \frac{\sqrt{3}}{2}\right),$

则
$$\overrightarrow{AP} \cdot \overrightarrow{BC} = -\frac{1}{2}\lambda - \frac{1}{4}\mu + \frac{3}{4}\mu = \frac{1}{2}(\mu - \lambda).$$

故选: D

- 二、填空题: 本大题共 5 小题,每小题 4 分,共 20 分,把答案填在题中横线上。
- 11.【答案】-3

【解析】

【分析】由两角差的正切公式计算.

【详解】因为 $\tan \alpha = \frac{1}{6}$,

【详解】因为
$$\tan \alpha = \frac{1}{6}$$
,

所以 $\tan(\alpha - \frac{\pi}{4}) = \frac{\tan \alpha - \tan \frac{\pi}{4}}{1 + \tan \alpha \tan \frac{\pi}{4}} = \frac{\frac{1}{6} - 1}{1 + \frac{1}{6} \times 1} = -\frac{5}{7}$.

故答案为: $-\frac{5}{7}$.

12. 【答案】
$$\frac{2\pi}{3}$$
$\frac{2}{3}$ π

【解析】

【分析】由诱导公式及余弦函数的单调性得结论.

【详解】因为
$$\cos \frac{2\pi}{3} = \cos(\pi - \frac{\pi}{3}) = -\cos \frac{\pi}{3} = -\frac{1}{2}$$
,且 $y = \cos x$ 在 $[0,\pi]$ 上单调递减,

所以由
$$\cos \alpha = -\frac{1}{2}$$
, $\alpha \in (0,\pi)$ 得 $\alpha = \frac{2\pi}{3}$.

故答案为: $\frac{2\pi}{3}$.

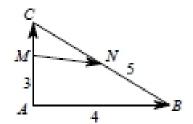
13. 【答案】 ①.
$$\frac{1}{2}$$
 ②. $-\frac{1}{6}$

【解析】

【详解】特殊化,不妨设 $AC \perp AB$,AB = 4,AC = 3,利用坐标法,以A为原点,AB为x轴,AC为y

轴,建立直角坐标系,
$$A(0,0)$$
, $M(0,2)$, $C(0,3)$, $B(4,0)$, $N(2,\frac{3}{2})$, $\overrightarrow{MN} = (2,-\frac{1}{2})$, $\overrightarrow{AB} = (4,0)$,

$$\overrightarrow{AC} = (0,3)$$
, $\mathbb{M}(2, -\frac{1}{2}) = x(4,0) + y(0,3)$, $4x = 2, 3y = -\frac{1}{2}$, $\therefore x = \frac{1}{2}$, $y = -\frac{1}{6}$.



考点: 本题考点为平面向量有关知识与计算, 利用向量相等解题.

14. 【答案】
$$-\frac{\pi}{6}$$

【解析】

【分析】依题意 $f\left(\frac{\pi}{3}\right)$ 为函数的最大值,即可得到 $2\times\frac{\pi}{3}+\varphi=\frac{\pi}{2}+2k\pi$, $k\in\mathbb{Z}$,结合 φ 的取值范围,即可得解.

www.gaokz

【详解】因为对
$$\forall x \in \mathbb{R}$$
, $f(x) \le f\left(\frac{\pi}{3}\right)$ 恒成立,所以 $2 \times \frac{\pi}{3} + \varphi = \frac{\pi}{2} + 2k\pi$, $k \in \mathbb{Z}$,

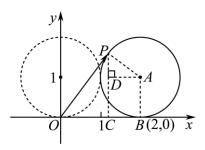
解得
$$\varphi = -\frac{\pi}{6} + 2k\pi$$
, $k \in \mathbb{Z}$,

因为
$$|\varphi| < \frac{\pi}{2}$$
,所以 $\varphi = -\frac{\pi}{6}$.

故答案为:
$$-\frac{\pi}{6}$$

【解析】

【详解】如图,连结 AP,分别过 P,A作 PC,AB 垂直 x 轴于 C,B 点,过 A作 AD \perp PC 于 D 点。由题 意知 BP 的长为 2.



- ::圆的半径为1,
- $\therefore \angle BAP = 2$,

故
$$\angle DAP = 2 - \frac{\pi}{2}$$

$$\therefore DP = AP \cdot \sin\left(2 - \frac{\pi}{2}\right) = -\cos 2$$

$$\therefore$$
PC=1-cos 2,

$$DA = AP\cos\left(2 - \frac{\pi}{2}\right) = \sin 2.$$

$$\therefore$$
 OC=2-sin 2.

故
$$\overrightarrow{OP} = (2-\sin 2, 1-\cos 2)$$
.

三、解答题:本大题共4小题,共40分.解答应写出文字说明,证明过程或演算步骤。

16. 【答案】(1)
$$-\frac{3}{5}$$
;

(2)
$$\sin(\alpha + \beta) = -\frac{56}{65} \stackrel{1}{\cancel{\boxtimes}} \frac{16}{65}$$
.

【解析】

【分析】(1)利用诱导公式和三角函数的定义求解;

(2) 由平方关系求得 $\sin \beta$,再利用两角和的正弦公式计算.

【小问1详解】

【小问 1 详解】
$$(-\frac{3}{5})^2 + (-\frac{4}{5})^2 = 1 ,$$

因此由已知得 $\sin \alpha = -\frac{4}{5}$, $\cos \alpha = -\frac{3}{5}$,

所以
$$\sin(\alpha + \frac{\pi}{2}) = \cos \alpha = -\frac{3}{5}$$
;

【小问2详解】

$$\cos \beta = \frac{5}{13}$$
, $\iint \sin \beta = \pm \sqrt{1 - \cos^2 \beta} = \pm \frac{12}{13}$,

 $\sin(\alpha + \beta) = \sin \alpha \cos \beta + \cos \alpha \sin \beta ,$

$$\sin \beta = \frac{12}{13} \, \text{Hz}, \quad \sin(\alpha + \beta) = -\frac{4}{5} \times \frac{5}{13} + (-\frac{3}{5}) \times \frac{12}{13} = -\frac{56}{65} \,,$$

$$\sin \beta = -\frac{12}{13}$$
 Fry, $\sin(\alpha + \beta) = -\frac{4}{5} \times \frac{5}{13} + (-\frac{3}{5}) \times (-\frac{12}{13}) = \frac{16}{65}$,

综上,
$$\sin(\alpha + \beta) = -\frac{56}{65}$$
或 $\frac{16}{65}$.

17. 【答案】(1) 1

$$(2) \ \frac{5\pi}{12}$$

【解析】

【分析】(1) 依题意可得 $m \cdot n = 0$,根据数量积的坐标运算得到方程,再根据同角三角函数的基本关系计 算可得;

(2) 首先求出 $|\vec{m}|$, $|\vec{n}|$, 依题意可得 $\cos\frac{\pi}{3} = \frac{m \cdot n}{|\vec{m}| \cdot |\vec{n}|} = \frac{1}{2}$, 再利用两角差的正弦公式计算可得;

【小问1详解】

解: 因为
$$\overrightarrow{m} = \left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right)$$
, $\overrightarrow{n} = (\sin x, \cos x)$ 且 $\overrightarrow{m} \perp \overrightarrow{n}$,

所以 $\vec{m} \cdot \vec{n} = \frac{\sqrt{2}}{2} \sin x - \frac{\sqrt{2}}{2} \cos x = 0$,即 $\sin x = \cos x$,所以 $\tan x = 1$;

【小问2详解】

解: 因为
$$\vec{m} = \left(\frac{\sqrt{2}}{2}, -\frac{\sqrt{2}}{2}\right), \vec{n} = (\sin x, \cos x),$$

所以
$$|\vec{m}| = \sqrt{\left(\frac{\sqrt{2}}{2}\right)^2 + \left(-\frac{\sqrt{2}}{2}\right)^2} = 1$$
, $|\vec{n}| = \sqrt{\sin^2 x + \cos^2 x} = 1$,

因为
$$\frac{1}{m}$$
 与 $\frac{1}{n}$ 的夹角为 $\frac{\pi}{3}$, 所以 $\cos \frac{\pi}{3} = \frac{\vec{m} \cdot \vec{n}}{|\vec{m}| \cdot |\vec{n}|} = \frac{1}{2}$, 即 $\frac{\sqrt{2}}{2} \sin x - \frac{\sqrt{2}}{2} \cos x = \frac{1}{2}$,

所以
$$\sin\left(x-\frac{\pi}{4}\right) = \frac{1}{2}$$
,因为 $x \in \left(0,\frac{\pi}{2}\right)$,所以 $x-\frac{\pi}{4} \in \left(-\frac{\pi}{4},\frac{\pi}{4}\right)$,所以 $x-\frac{\pi}{4} = \frac{\pi}{6}$,所以 $x = \frac{5\pi}{12}$;

18. 【答案】(1) 表格见解析,
$$f(x) = 5\sin\left(2x - \frac{\pi}{6}\right)$$

(2)
$$f(x)_{\text{max}} = \frac{5}{2}$$
, $f(x)_{\text{min}} = -5$

 $(3) \frac{\pi}{6}$

【分析】(1) 根据表格数据得到方程组,即可求出 ω 、 φ ,再读出 Λ ,从而得到函数解析式,再补全表格 即可;

- (2) 根据x的取值范围,求出 $2x-\frac{\pi}{6}$ 的范围,再结合正弦函数的性质计算可得;
- (3) 利用平移规律得 $g(x) = 5\sin\left(2x + 2\theta \frac{\pi}{6}\right)$, 再利用对称中心公式, 令 $2 \times \frac{5\pi}{12} + 2\theta \frac{\pi}{6} = k\pi$,

 $k \in \mathbb{Z}$,求得 θ . 【小问 1 详解】

由表格数据可知
$$\begin{cases} \frac{\pi}{3}\omega + \varphi = \frac{\pi}{2} \\ \frac{5\pi}{6}\omega + \varphi = \frac{3\pi}{2} \end{cases}$$
 解得
$$\begin{cases} \omega = 2 \\ \varphi = -\frac{\pi}{6} \end{cases}$$
 且 $A = 5$,

所以
$$f(x) = 5\sin\left(2x - \frac{\pi}{6}\right)$$
,

数据补全如下表:

x	$\frac{\pi}{12}$	$\frac{\pi}{3}$	$\frac{7\pi}{12}$	$\frac{5\pi}{6}$	$\frac{13\pi}{12}$
$\omega x + \varphi$	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
$A\sin(\omega x + \varphi)$	0	0 K 15	0	-5	0

【小问 2 详解】由(1)可得
$$f(x) = 5\sin\left(2x - \frac{\pi}{6}\right)$$
,

又
$$x \in \left[-\frac{\pi}{2}, 0\right]$$
,则 $2x - \frac{\pi}{6} \in \left[-\frac{7\pi}{6}, -\frac{\pi}{6}\right]$,所以 $\sin\left(2x - \frac{\pi}{6}\right) \in \left[-1, \frac{1}{2}\right]$,

所以
$$f(x) \in \left[-5, \frac{5}{2}\right]$$
,

所以当
$$2x - \frac{\pi}{6} = -\frac{7\pi}{6}$$
,即 $x = -\frac{\pi}{2}$ 时 $f(x)_{\max} = \frac{5}{2}$,当 $2x - \frac{\pi}{6} = -\frac{\pi}{2}$,即 $x = -\frac{\pi}{6}$ 时 $f(x)_{\min} = -5$.

函数 y = f(x) 图象上所有点向左平移 $\theta(\theta > 0)$ 个单位长度,得 $g(x) = 5\sin\left(2x + 2\theta - \frac{\pi}{6}\right)$, 因为 $y = \sin x$ 的对称中心是 $(k\pi, 0), k \in \mathbb{Z}$,

因为函数 y = g(x) 图象的一个对称中心为 $\left(\frac{5\pi}{12}, 0\right)$,

所以
$$2 \times \frac{5\pi}{12} + 2\theta - \frac{\pi}{6} = k\pi$$
, $k \in \mathbb{Z}$, 解得 $\theta = -\frac{\pi}{3} + \frac{k\pi}{2}$, $k \in \mathbb{Z}$,

又 $\theta > 0$, 当k = 1时, θ 的最小值是 $\frac{\pi}{6}$.

19. 【答案】(1) 3; (2) 证明见解析; (3) k=1.

【解析】

【分析】(1)根据新定义逐一判断即可;

(2) 根据新定义证明即可;

(3) 若 $\phi(x) = \sin x + kx$ 为线周期函数,则存在非零常数T , 对任意 $x \in R$, 都有

 $\sin(x+T)+k(x+T)=\sin x+kx+T$, 可得 2kT=2T, 解得 k 的值再检验即可.

【详解】(1) 对于 $y = 2^x$, $f(x+T) = 2^{x+T} = 2^x \cdot 2^T = f(x) \cdot 2^T$, 所以不是线周期函数,

对于 $y = \log_2 x$, $f(x+T) = \log_2(x+T) \neq f(x) + T$, 所以不是线周期函数,

对于 y = [x], f(x+1) = [x+1] = [x] + 1 = f(x) + 1, 所以是线周期函数;

(2) 若g(x)为线周期函数,其线周期为T,

则存在非零常数T对任意 $x \in R$,都有g(x+T) = g(x) + T恒成立,

因为G(x) = g(x) - x,

所以
$$G(x+T) = g(x+T) - (x+T) = g(x) + T - (x+T) = g(x) - x = G(x)$$
,

所以G(x) = g(x) - x 为周期函数;

(3) 因为 $\phi(x) = \sin x + kx$ 为线周期函数,

则存在<mark>非零</mark>常数T, 对任意 $x \in R$,

都有
$$\sin(x+T)+k(x+T)=\sin x+kx+T$$
,

所以 $\sin(x+T)+kT = \sin x+T$,

所以2kT = 2T,因为 $T \neq 0$,所以k = 1,

检验: 当k=1时, $\phi(x)=\sin x+x$,

存在非零常数 2π , 对任意 $x \in R$,

$$\phi(x+2\pi) = \sin(x+2\pi) + (x+2\pi) = \sin x + x + 2\pi = \phi(x) + 2\pi,$$

所以 $\phi(x) = \sin x + x$ 为线周期函数,

所以: k=1.

【点睛】关键点点睛: 本题解题的关键点是对新定义的理解和应用,以及特殊值解决恒成立问题.

关于我们

北京高考在线创办于 2014 年,隶属于北京太星网络科技有限公司,是北京地区极具影响力的中学升学服务平台。主营业务涵盖:北京新高考、高中生涯规划、志愿填报、强基计划、综合评价招生和学科竞赛等。

北京高考在线旗下拥有网站门户、微信公众平台等全媒体矩阵生态平台。平台活跃用户 40W+,网站年度流量数千万量级。用户群体立足于北京,辐射全国 31 省市。

北京高考在线平台一直秉承 "精益求精、专业严谨"的建设理念,不断探索"K12教育+互联网+大数据"的运营模式,尝试基于大数据理论为广大中学和家长提供新鲜的高考资讯、专业的高考政策解读、科学的升学规划等,为广大高校、中学和教科研单位提供"衔接和桥梁纽带"作用。

平台自创办以来,为众多重点大学发现和推荐优秀生源,和北京近百所中学达成合作关系,累计举办线上线下升学公益讲座数百场,帮助数十万考生顺利通过考入理想大学,在家长、考生、中学和社会各界具有广泛的口碑影响力

未来,北京高考在线平台将立足于北京新高考改革,基于对北京高考政策研究及北京高校资源优势,更好的服务全国高中家长和学生。

Q北京高考资讯

官方微信公众号: bjgkzx 官方网站: www.gaokzx.com 咨询热线: 010-5751 5980

微信客服: gaokzx2018