2023 北京理工大附中高二(下)期中

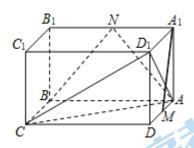
数学

	、选择题共 10 小题,	每小题 4分, 共 40分。	在	每小题列出的四个i	选项	中,	选出符合题目要求的一项。
1.	复数 1+i 的模为()					www.gao
	A. $\sqrt{2}$	B. $\sqrt{3}$	C.	2	D.	$\sqrt{5}$	10
2.	若曲线 $y=x^2$ 的一条	切线的斜率为4,则切点	(的	横坐标为 ()			
	A. 1	B. 2	C.	3	D.	4	
3.	曲线 $x^2 - \frac{y^2}{2} = 1$ 的离						
	A. $\sqrt{2}$	B. √3	C.	2	D.	3	
4.		$a \in \mathbb{R}$)与圆 $x^2 + y^2 = 5$ 的化	立置	关系为 ()			
	A. 相离	B. 相切	C.	相交	D.	不研	角定
5.	数列 $\{a_n\}$ 的前 n 项和	为 S _n , 若 S _n - S _{n-1} =2 _n	- 1	$(n \ge 2)$, 且 $S_2 = 3$,	则	a_1 +	$a_3 = ()$
	A. 2	B. 3	C.	4	D.	5	
6.	若等比数列{an}满足	. <i>a</i> 1 <i>a</i> 5= <i>a</i> 3,则 <i>a</i> 3=()				
	A. 1	B1	C.	0或1	D.	- 1	或1
7.	对于函数 $f(x) = \frac{x}{1x}$	【 的描述,下列说法正码 1 x	角的	是()			
	A. 函数 $f(x)$ 存在	唯一的零点					NWW. 9aokzy.co
	B. 函数 $f(x)$ 在区间	间(0, e)上单调递增					LIX.
	C. 函数 $f(x)$ 在区间	间(<i>e</i> ,+∞)上单调递增	9				111020
	D. 函数 $f(x)$ 的值 ¹						JANIN.
8.	设 $\{a_n\}$ 是等比数列,	则"a1>a2>a3"是"数	[列	{an}是递减数列"的	勺 (
	A. 充分不必要条件		В.	必要不充分条件			
	C. 充要条件			既不充分也不必要			
9.		$\mathbf{E} \mathbf{R}$ 上的偶函数,当 $x \ge 0$) 时	$f(x) = (x^2 - 2x^2 - $	x) e	e^x ,	则函数 $f(x)$ 的极值点的个数
	为()	3/1	3				
	A. 0	B. 1 1+a _{n+1} >2a _n (n>1	C.	2	D.	3	
10	. 数列 $\{a_n\}$ 满足: $\mathbf{a_n}$	$_{1}^{+a_{n+1}} > 2a_{n}(n > 1)$, r	n∈ N*), 给出下过	上命是	题:	
	①若数列{an}满足,	a2>a1,则a _n >a _{n-1} (n>	>1, n∈ N*)成立;			
	②存在常数 c ,使得	a _n >c(n∈N*)成立;					
	③若 <i>p</i> + <i>q</i> > <i>m</i> + <i>n</i> (其口	$ p, q, m, n \in \mathbb{N}^* $	a_p +	$-a_q > a_m + a_n;$			

④存在常数 d ,	使得 a _n > a	+(n-1)d	$(n \in N)$	*)都成立.
-------------	-----------------------	---------	-------------	--------

其中所有正确命题的序号是(

- A. 12
- B. (1)(3)
- C. (1)(4)
- D. 1


二、填空题共5小题,每小题5分,共25分。

- 11. (5分) 已知 $\{a_n\}$ 为等比数列, $a_1=1$, $a_4=\frac{1}{8}$,那么 $\{a_n\}$ 的公比为 为_____.
- 12. (5分) 已知等差数列 $\{a_n\}$ 的公差 $d \neq 0$,且 $a_3 + a_9 = a_{10} a_8$. 若 $a_n = 0$,则 $n = a_{10} a_{10} a_{10}$.
- 13. (5 分) 已知函数 $f(x) = ax^2 lnx$,若 f(x) 在区间[1,2]上单调递增,则实数 a 的取值范围
- 14. (5分) 已知 S_n 是等差数列 $\{a_n\}$ 的前 n 项和,若仅当 n=5 时, S_n 取到最小值,且 $|a_5|>|a_6|$,则满足 $S_n>$ 0 的 n 的最小值为
- 15. (5分) 已知函数 $f(x) = \begin{cases} e^{x}-kx, x \ge 0, \\ kx^{2}-x+1, x < 0. \end{cases}$ 若 k=0, 则不等式 f(x) < 2 的解集为 _______; 若

f(x) 恰有两个零点,则 k 的取值范围为

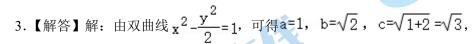
三、解答题。共6小题,共85分。解答应写出文字说明,演算步骤或证明过程。

- 16. 已知数列 $\{a_n\}$ 是公差不为零的等差数列, $a_2=5$,且 a_4 是 a_1 , a_{13} 的等比中项。
 - (1) 求数列{an}的通项公式;
 - (2) 设 S_n 为数列 $\{a_n\}$ 的前 n 项和,求数列 $\{\frac{1}{S}\}$ 的前 n 项和.
- www.gaokz 17. 如图,在长方体 ABCD - $A_1B_1C_1D_1$ 中,四边形 BCC_1B_1 是边长为 1 的正方形,AB=2, M, N 分别为 AD, A1B1的中点.
 - (I) 求证: *MA*1//平面 *ANC*;
 - (II) 求直线 CN 与平面 D_1AC 所成角的正弦值.

- (1) 求f(x) 的极值;
- (2) 求f(x) 在区间[-3,4]上的最大值和最小值;
- (3) $\frac{\mathsf{Z} \oplus \mathsf{J}}{\mathsf{E}}(x)$ 在点 A, B 处的切线互相平行,写出 A, B 中点的坐标(只需直接写出结果).
- 19. 设数列 $\{a_n\}$ 的前n项和为 S_n ,且满足 $S_n=2a_n-1(n\in\mathbb{N}^*)$.

- (1) 求证数列{an}是等比数列;
- (2) 数列 $\{b_n\}$ 满足 $b_{n+1} = a_n + b_n (n \in N^*)$,且 $b_1 = 3$.
- (i) 求数列{bn}的通项公式;
- (ii) 若不等式 $\log_2(b_n-2)$ < $\frac{3}{16}$ n²+ λ 对 $n\in \mathbb{N}^*$ 恒成立,求实数 λ 的取值范围.
- 20. 已知函数 $f(x) = \frac{e^{x} a}{x} a \ln x (a \in \mathbb{R})$.
 - (1) 求曲线 y=f(x) 在点 (1, f(1)) 处的切线方程;
 - (2) 求f(x) 的单调区间;
 - (3) 当 $a \ge e$ 时,写出函数 f(x) 的零点个数. (只需直接写出结果)
- 21. 若对于正整数 k, g(k) 表示 k 的最大奇数因数,例如 g(3)=3, g(10)=5. 设 $S_n=g(1)+g(2)+g(3)+g(4)+\cdots+g(2^n)$.
 - (I) 求g(6), g(20)的值;
 - (II) 求 S1, S2, S3 的值;
 - (III) 求数列 $\{S_n\}$ 的通项公式.

参考答案


- WWW.9aokzx.col 一、选择题共10小题,每小题4分,共40分。在每小题列出的四个选项中,选出符合题目要求的一
- 1.【解答】解: $\frac{1+i}{i}$ =-i+1, 故其模为√2.

故选: A.

2.【解答】解:设切点的横坐标为x,

则由题意可得: $v' = 2x = 4 \Rightarrow x = 2$.

故选: B.

所以离心率
$$e = \frac{c}{a} = \sqrt{3}$$
.

故选: B.

4. 【解答】解: 由题知, 圆心坐标 (0, 0), 半径 $\sqrt{5}$,

将直线 ax - y + 2a = 0 化为点斜式得 y = a(x + 2),

知该<u>直线过</u>定点(-2,0),

又 $(-2)^{2}+0^{2}<5$, 故该定点在圆内,

所以该直线与圆 $x^2+v^2=5$ 必相交.

故选: C.

5. 【解答】解: 因为 $S_n - S_{n-1} = 2n - 1$, $n \ge 2$, 且 $S_2 = 3$,

当 n=2 时, $S_2 - S_1 = 3$,即 $S_1 = 0$,则 $a_1 = 0$,

所以 a1+a3=5.

故选: D.

6. 【解答】解: 等比数列{an}满足 a1a5=a3,

可得 $(a_3)^2 = a_3$

则 $a_3 = 1$.

故选: A.

7. 【解答】解: 对于 A,由题意函数 $f(x) = \frac{x}{\ln x}$,定义域为 $(0, 1) \cup (1, +\infty)$, $f(x) = \frac{x}{\ln x} = 0$ 无解,

A 错误;

又因为 $f'(x) = \frac{1nx-1}{1n^2x}$, 当0 < x < 1或1 < x < e时, f'(x) < 0, 故函数f(x) 单调递减,

 $\exists x > e$ 时, f'(x) > 0, 故函数 f(x) 单调递增, B 错误, C 正确;

 $\stackrel{\text{def}}{=} x > 1$, $f(x) \ge f(e) \ \ \ \ \ \ \ \ f(e) = e$,

所以 $f(x) \ge e$, 且当0 < x < 1时,lnx < 0,

所以f(x) < 0,故函数f(x) 的值域不为R,故D错误.

故选: C.

8. 【解答】解: $\{a_n\}$ 是等比数列,则由" $a_1>a_2>a_3$ "可得"数列 $\{a_n\}$ 是递减数列",故充分性成立. WWW.

再由"数列 $\{a_n\}$ 是递减数列",可得" $a_1>a_2>a_3$ ",故必要性成立.

综上可得," $a_1>a_2>a_3$ "是"数列 $\{a_n\}$ 是递减数列"的充要条件,

故选: C.

9. 【解答】解: 因为当 $x \ge 0$ 时, $f(x) = (x^2 - 2x) e^x$,则 $f'(x) = e^x (x^2 - 2)$,

$$\oint f'(x) = 0$$
, $\lim_{x \to \infty} e^x(x^2 - 2) = 0$, $\lim_{x \to \infty} f'(x) = 0$,

当 $\mathbf{x} \in (0, \sqrt{2})$ 时, f'(x) < 0, 则函数f(x) 单调递减,

当 $\mathbf{x} \in (\sqrt{2}, +\infty)$ 时,f'(x) > 0,则函数f(x) 单调递增,

所以x=√2是函数的一个极小值点,

又因为f(x)是定义在R上的偶函数,

所以 $x=-\sqrt{2}$ 是函数的另外一个极小值点,

即函数 f(x) 的极值点的个数为 2.

故选: C.

10. 【解答】解: 对于①: 由 $a_{n-1} + a_{n+1} > 2a_n (n > 1, n \in N^*)$ 得 $a_{n+1} - a_n > a_n - a_{n-1}$,

所以若 $a_2 > a_1$,则 $a_2 - a_1 > 0$,

$$a_n - a_{n-1} > \cdots > a_2 - a_1 > 0$$
, $a_n > a_{n-1} (n > 1, n \in N^*)$, 故①正确;

对于②: 取
$$a_n = -lnn$$
,则满足 $a_{n-1} + a_{n+1} > 2a_n (n > 1, n \in \mathbb{N}^*)$,

但当 $n \rightarrow +\infty$ 时, $a_n \rightarrow -\infty$, 故②错误;

对于③: 由②的例子可知③也是错误的;

对于④: $a_{n-1}+a_{n+1}>2a_n$ 得 $a_{n+1}-a_n>a_n-a_{n-1}$,

 $\mathbb{P} |a_{n+1} - a_n > a_n - a_{n-1} > \cdots > a_2 - a_1, \mathbb{R} d < a_2 - a_1,$

则 $a_n = a_1 + (a_2 - a_1) + (a_3 - a_2) + \cdots + (a_n - a_{n-1}) > a_1 + d + d + \cdots + d = a_1 + (n-1) d$,故④正确.

故选: C.

二、填空题共5小题,每小题5分,共25分。

11. 【解答】解:根据题意,设 $\{a_n\}$ 的公比为q,

若
$$a_1=1$$
, $a_4=\frac{1}{8}$, 则 $q^3=\frac{a_4}{a_1}=\frac{1}{8}$, 则 $q=\frac{1}{2}$,

则数列 $\{-\frac{1}{a_1}\}$ 是首项 $\frac{1}{a_1}=1$,公比为 $\frac{1}{a}=2$ 的等比数列,

则数列 $\{\frac{1}{a_n}\}$ 的前 5 项和为 $\frac{1\times(1-2^5)}{1-2}=31$,

故答案为: $\frac{1}{2}$, 31.

12. 【解答】解: $: a_3+a_9=a_{10}-a_8,$

 $a_1+2d+a_1+8d=a_1+9d-(a_1+7d)$,

解得 a1=-4d

$$\therefore a_n = -4d + (n-1) d = (n-5) d,$$

令 (n-5) d=0 可解得 n=5 $(d\neq 0)$

故答案为:5

13. 【解答】解: :: $f(x) = ax^2 - lnx$, x > 0, :: $f'(x) = 2ax - \frac{1}{x}$,

f(x) 在区间[1, 2]内单调递增, $f'(x) \ge 0$ 在[1, 2]上恒成立,

WWW.9aokzx.com

$$\therefore 2ax - \frac{1}{x} > 0$$
在[1,2]上恒成立, $\therefore a > \frac{1}{2x^2}$ 在[1,2]上恒成立,

∴ a
$$> (\frac{1}{2x^2})$$
 , $x \in [1, 2]$, 因为在[1, 2], $(\frac{1}{2x^2})$ max $= \frac{1}{2}$,

$$\therefore a \gg \frac{1}{2}$$
, 则 a 的取值范围是: $[\frac{1}{2}, +\infty)$.

若f(x) 在[1, 2]上存在单调递增区间,则f'(x) > 0 在[1, 2]上有解,

即
$$a \gg \frac{1}{2x^2}$$
在[1, 2]上有解, $\therefore a \gg (\frac{1}{2x^2})_{min}$,

又
$$(\frac{1}{2x^2})$$
 = $\frac{1}{8}$, $\therefore a > \frac{1}{8}$. 则 a 的取值范围是: $(\frac{1}{8}, +\infty)$.

故答案为: $\left[\frac{1}{2}, +\infty\right)$; $\left(\frac{1}{8}, +\infty\right)$.

14. 【解答】解: 因为 $S_n = na_1 + \frac{n(n-1)}{2}d = \frac{d}{2}n^2 + (a_1 - \frac{d}{2})n$,当n = 5时 S_n 取到最小值,

所以 d>0,所以 a5 < a6,

因为
$$|as|>|a6|$$
,所以 - $as,即 - $(a_1+4d)>a_1+5d$,所以 $a_1<-\frac{9}{2}d$.$

$$S_n = n(a_1 + \frac{(n-1)}{2}d) > 0$$
, $Ma_1 + \frac{(n-1)}{2}d > 0$, $Ma_1 < -\frac{9}{2}d$

所以 $-\frac{9}{2}$ d> $-\frac{(n-1)}{2}$ d,解之得: n>10,因为 $n\in\mathbb{N}^*$,所以n的最小值为 11.

故答案<mark>为</mark>: 11.

15. 【解答】解:
$$k=0$$
 时, $f(x) = \begin{cases} e^{x}, & x \ge 0 \\ 1-x, & x \le 0 \end{cases}$

$$f(x) < 2$$
 等价为
$$\begin{cases} x \geqslant 0 \\ e^x < 2 \end{cases}$$
 或
$$\begin{cases} x < 0 \\ 1-x < 2 \end{cases}$$

解得 $0 \le x < ln2$ 或 - 1 < x < 0,

所以 - 1<x<ln2:

由 f(x) 恰有两个零点等价为 $e^x = kx$ $(x \ge 0)$ 和 $kx^2 - x + 1 = 0$ (x < 0) 的实根的个数的和为 2.

当 k=0 时, $e^x=kx$ $(x\geq 0)$ 的解的个数为 0, $kx^2-x+1=0$ (x<0) 的实根的个数为 0,不符题意;

当 k < 0 时, $e^x = kx$ $(x \ge 0)$ 无解, $kx^2 - x + 1 = 0$ (x < 0) 的实根的个数为 1,不符合题意;

当 k > 0 时, $kx^2 - x + 1 = 0$ (x < 0) 没有实数解,

则 $e^x = kx$ $(x \ge 0)$ 有两解,

设
$$g(x) = \frac{e^x}{x} (x > 0), g'(x) = \frac{e^x(x-1)}{x^2},$$

可得g(x) 在 $(1, +\infty)$ 递增,在(0, 1) 递减,可得g(x) 的最小值为g(1) = e,

当 k > e 时, v = g(x) 与 v = k 有两个交点.

故答案为: (-1, ln2); (e, +∞).

- 三、解答题。共6小题,共85分。解答应写出文字说明,演算步骤或证明过程。
- 16. 【解答】解: (1) ∵a4 是 a1, a13 的等比中项,

$$a_4^2 = a_1 a_{13}$$

设等差数列 $\{a_n\}$ 的公差为d,则 $(a_2+2d)^2=(a_2-d)(a_2+11d)$,

即 $(5+2d)^2 = (5-d)(5+11d)$,整理得: $d^2-2d=0$,

- $:d\neq 0$
- $\therefore d=2$,

$$a_n = a_2 + (n-2) d = 5+2 (n-2) = 2n+1;$$

(2) 由于 (1) 得
$$a_n = 2n+1$$
,则 $S_n = \frac{n(2n+4)}{2} = n^2 + 2n$,

所以
$$\frac{1}{S_n} = \frac{1}{n(n+2)} = \frac{1}{2} \left(\frac{1}{n} - \frac{1}{n+2} \right).$$

$$\frac{3}{4}$$
 - $\frac{2n+3}{2(n+1)(n+2)}$.

17. 【解答】(I) 证明: 取 AC 的中点 O, 连结 OM, ON,

因为M是AD的中点,所以OM//CD, $OM = \frac{1}{2}CD$,

在长方体 ABCD - A₁B₁C₁D₁中,因为 N 是 A₁B₁的中点,

所以 $NA_1//CD$, $NA_1 = \frac{1}{2}CD$,

所以 $NA_1 // OM$ 且 $NA_1 = OM$,

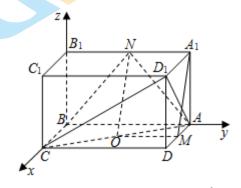
所以四边形 $NOMA_1$ 是平行四边形, 所以 $MA_1//ON$,

又因为 *MA*1⊄平面 *ANC*, *ON*⊂平面 *ANC*,

所以 MA1 // 平面 ANC:

(II)解:在长方体 ABCD - $A_1B_1C_1D_1$ 中,以点 B 为坐标原点,建立空间直角坐标系如图所示, NNN,

则 C (1, 0, 0), A (0, 2, 0), D_1 (1, 2, 1), N (0, 1, 1),


所以
$$\overrightarrow{CN} = (-1, 1, 1), \overrightarrow{CA} = (-1, 2, 0), \overrightarrow{CD_1} = (0, 2, 1),$$

设平面 D_1AC 的法向量为 $\mathbf{n} = (\mathbf{x}, \mathbf{y}, \mathbf{z})$,

则有
$$\begin{cases} \overrightarrow{n} \cdot \overrightarrow{CA} = 0 \\ \overrightarrow{n} \cdot \overrightarrow{CD_1} = 0 \end{cases}$$
, 即 $\begin{cases} -x+2y=0 \\ 2y+z=0 \end{cases}$,

所以
$$|\cos\langle \overrightarrow{CN}, \overrightarrow{n} \rangle| = \frac{|\overrightarrow{CN} \cdot \overrightarrow{n}|}{|\overrightarrow{CN}| |\overrightarrow{n}|} = \frac{3}{\sqrt{3} \times 3} = \frac{\sqrt{3}}{3}$$

故直线 CN 与平面 D_1AC 所成角的正弦值为 $\sqrt{3}$

18. 【解答】解: (1) $f'(x) = 3x^2 - 12 = 3(x+2)(x-2)$,

当 x < -2 时, f'(x) > 0, f(x) 单调递增;

当 - 2<x<2 时,f' (x) <0,f(x) 单调递减;

当x > 2时, f'(x) > 0, f(x) 单调递增,

所以, 当x = -2时, f(x) 取极大值f(-2) = 28; 当x = 2时, f(x) 取极小值f(2) = -4.

WWW.gaokzx.co

(2) 由 (1) 知, 当 -3 < x < -2 时, f(x) 单调递增;

当 - 2<x<2 时,f(x) 单调递减;当 2<x<4 时,f(x) 单调递增,

当 x = -2 时, f(x) 取极大值 f(-2) = 28; 当 x = 2 时, f(x) 取极小值 f(2) = -4.

 $\nabla f(-3) = 19, f(4) = 28,$

所以, f(x) 在区间[-3,4]上的最大值为 28,最小值为 -4.

(3) $\begin{picture}(20,0) \put(0,0){\line(0,0){10}} \put$

由题意 $f'(x_1) = f'(x_2)$,即 $3x_1^2 - 12 = 3x_2^2 - 12$,

∴A, B 中点的坐标为 (0, 12).

19. 【解答】解: (1) 证明: 因为 $S_n = 2a_n - 1(n \in \mathbb{N}^*)$,

所以当 n=1 时, $a_1=S_1=2a_1-1$,解得 $a_1=1$.

4.1, WWW. 9aokZX.com 当 $n \ge 2$ 时, $a_n = S_n - S_{n-1} = 2a_n - 1 - (2a_{n-1} - 1) = 2a_n - 2a_{n-1}$, 则 $a_n = 2a_{n-1}$,

所以数列 $\{a_n\}$ 是等比数列,首项为1,公比为2.

(2) (*i*) 因为数列 $\{b_n\}$ 满足 $b_{n+1} = a_n + b_n (n \in \mathbb{N}^*)$,且 $b_1 = 3$,

所以
$$b_{n+1}-b_n=a_n=2^{n-1}$$
,

则
$$b_n = (b_n - b_{n-1}) + (b_{n-1} - b_{n-2}) + \cdots + (b_2 - b_1) + b_1$$

$$=2^{n-2}+2^{n-3}+\cdots+1+3$$

$$=\frac{2^{n-1}-1}{2-1}+3$$

 $2 - \frac{1}{1} + 3$ $= 2^{n-1} + 2.$ (ii) (ii) 因为不等式 $\log_2(b_n-2) < \frac{3}{16}n^2 + \lambda$ 对 $n \in \mathbb{N}^*$ 恒成立,

则
$$\lambda > -\frac{3}{16}n^2 + n - 1$$
, $⋄$ g(n) = $-\frac{3}{16}n^2 + n - 1 = -\frac{3}{16}(n - \frac{8}{3})^2 + \frac{1}{3} ≤$ g(3) = $\frac{5}{16}$,

所以 $\lambda > \frac{5}{16}$,

所以实数 λ 的取值范围为 ($\frac{5}{16}$, +∞).

20. 【解答】解: (1) 由 $f(x) = \frac{e^{x} - a}{v} - a \ln x$, 可得 $f'(x) = \frac{e^{x}(x-1) - ax + a}{2}$,

则 f'(1) = 0 且 f(1) = e - a,所以曲线 y = f(x) 在点 (1, f(1)) 处的切线方程 y = e - a.

(2) 由函数
$$f(x) = \frac{e^{x} - a}{x} - a \ln x$$
 的定义域为 (0, +∞), 且 $f'(x) = \frac{(x-1)(e^{x} - a)}{x^2}$,

若 $a \le 0$, 令 f'(x) = 0, 解得 x = 1,

当 x∈ (0, 1) 时, f' (x) <0, f(x) 单调递减;

当 $x \in (1, +\infty)$ 时, f'(x) > 0, f(x) 单调递增,

所以函数 f(x) 的单调递减区间为 (0,1),单调递增区间为 $(1,+\infty)$;

若 a>0, 令 f'(x)=0,解得 x=1 或 x=lna,

①若 lna≤0 时, 即 0<a≤1 时,

当 $x \in (0, 1)$ 时, f'(x) < 0, f(x) 单调递减;

当 $x \in (1, +\infty)$ 时, f'(x) > 0, f(x) 单调递增;

所以函数f(x) 的单调递减区间为(0,1),单调递增区间为 $(1,+\infty)$;

②若 0<lna<1 时,即 1<a<e 时,

当 $x \in (0, lna)$ 时, f'(x) > 0, f(x) 单调递增;

当 x∈ (lna, 1) 时, f' (x) <0, f (x) 单调递减;

当 x∈ (1, +∞) 时, f' (x) >0, f(x) 单调递增;

www.gaokz 所以函数f(x) 的单调递减区间为(lna, 1), 单调递增区间为(0, lna), (1, $+\infty$);

③若 lna=1 时,即 a=e 时,可得 $f'(x) \ge 0$,f(x) 单调递增,

所以函数 f(x) 的单调递增区间为 $(0, +\infty)$;

④若 *lna*>1 时,即 *a*>*e* 时,

当 $x \in (0, 1)$ 时, f'(x) > 0, f(x) 单调递增;

当 x∈ (, lna) 时, f' (x) <0, f(x) 单调递减;

当 x∈ (lna, $+\infty$) 时, f' (x) >0, f(x) 单调递增;

所以函数 f(x) 的单调递减区间为 (1, lna) (0, 1),单调递增区间为 (0, 1), $(lna, +\infty)$.

综上所述,当 $0 \le a \le 1$ 时,函数 f(x) 的单调递减区间为 (0, 1),单调递增区间为 $(1, +\infty)$;

当 1 < a < e 时,函数 f(x) 的单调递减区间为 (lna, 1),单调递增区间为 (0, lna), $(1, +\infty)$;

当 a=e 时,函数 f(x) 的单调递增区间为 $(0, +\infty)$;

 $\exists a > e$ 时,函数 f(x) 的单调递减区间为 (1, lna) (0, 1),单调递增区间为 (0, 1), $(lna, +\infty)$.

(3) 由 (2) 知, 当 a=e 时, 可得 $f'(x) \ge 0$, f(x) 单调递增,

又由
$$f(x) = \frac{e^{x} - e}{x} - e \ln x$$
, 可得 $f(1) = 0$, 此时 $f(x)$ 在 $(0, +\infty)$ 只有一个零点;

当 a > e 时,函数 f(x) 的单调递减区间为 (1, lna),单调递增区间为 (0, 1), $(lna, +\infty)$,

当 x=1 时,函数取得极大值,极大值为 $f(1) = e^1 - a$,

当 x=1 时,函数取得极小值 f(lna),其中 $f(lna) < f(1) = e^1 - a < 0$,

当 $x \to +\infty$ 时,函数 $f(x) \to +\infty$,

所以函数 f(x) 在 $(0, +\infty)$ 只有一个零点,

综上可得,函数f(x)在(0,+ ∞)只有一个零点.

21. 【解答】解: (I) : g(k) 表示 k 的最大奇数因数,

$$\therefore g(6) = 3, g(20) = 5.$$

$$(II) S_1 = g(1) + g(2) = 1 + 1 = 2; S_2 = g(1) + g(2) + g(3) + g(4) = 1 + 1 + 3 + 1 = 6;$$

$$S_3 = g(1) + g(2) + g(3) + g(4) + g(5) + g(6) + g(7) + g(8) = 1 + 1 + 3 + 1 + 5 + 3 + 7 + 1 = 22.$$
 … (6分)

(III) 由(I)(II) 不难发现对 $m \in \mathbb{N}^*$,有g(2m) = g(m).

所以当
$$n \ge 2$$
 时, $S_n = g(1) + g(2) + g(3) + g(4) + \dots + g(2^n - 1) + g(2^n)$

$$= [g(1) + g(3) + g(5) + \cdots + g(2^{n} - 1)] + [g(2) + g(4) + \cdots + g(2^{n})]$$

$$=[1+3+5+\cdots+(2^n-1)]+[g(2\times 1)+g(2\times 2)+\cdots+g(2\times 2^{n-1})]$$

$$= \frac{(1+2^{n}-1)\times 2^{n-1}}{2} + [g(1)+g(2)+\cdots+g(2^{n-1})] = 4^{n-1} + S_{n-1}\cdots (11 \%)$$

于是 $S_n - S_{n-1} = 4^{n-1}$, $n \ge 2$, $n \in \mathbb{N}^*$.

所以 $S_n = (S_n - S_{n-1}) + (S_{n-1} - S_{n-2}) + \dots + (S_2 - S_1) + S_1 = 4^{n-1} + 4^{n-2} + \dots + 4^2 + 4 + 2$

=
$$\frac{4(1-4^{n-1})}{1-4}$$
+2= $\frac{4^n}{3}$ + $\frac{2}{3}$, $n \ge 2$, $n \in \mathbb{N}^*$. ··· (13 分)

又 $S_1=2$,满足上式,

所以对
$$n \in \mathbb{N}^*$$
, $S_n = \frac{1}{3} (4^n + 2)$.

… (14分)

www.gaokzx.com

www.gaokzx.com

关于我们

北京高考在线创办于 2014 年,隶属于北京太星网络科技有限公司,是北京地区极具影响力的中学升学服务平台。主营业务涵盖:北京新高考、高中生涯规划、志愿填报、强基计划、综合评价招生和学科竞赛等。

北京高考在线旗下拥有网站门户、微信公众平台等全媒体矩阵生态平台。平台活跃用户 40W+,网站年度流量数千万量级。用户群体立足于北京,辐射全国 31 省市。

北京高考在线平台一直秉承 "精益求精、专业严谨"的建设理念,不断探索"K12教育+互联网+大数据"的运营模式,尝试基于大数据理论为广大中学和家长提供新鲜的高考资讯、专业的高考政策解读、科学的升学规划等,为广大高校、中学和教科研单位提供"衔接和桥梁纽带"作用。

平台自创办以来,为众多重点大学发现和推荐优秀生源,和北京近百所中学达成合作关系,累计举办线上线下升学公益讲座数百场,帮助数十万考生顺利通过考入理想大学,在家长、考生、中学和社会各界具有广泛的口碑影响力

未来,北京高考在线平台将立足于北京新高考改革,基于对北京高考政策研究及北京高校资源优势,更好的服务全国高中家长和学生。

Q 北京高考资讯

咨询热线: 010-5751 5980

微信客服: gaokzx2018

官方微信公众号: bjgkzx 官方网站: www.gaokzx.com